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In this paper, we study factorization in an integral domain R, that is, factoring elements of R
into products of irreducible elements. We investigate several factorization properties in R which
are weaker than unique factorization.

Introduction

Let R be an integral domain with quotient field K. In this paper, we study fac-
torization in R, that is, factoring elements of R into products of irreducible
elements. The classical situation is when this factorization exists and is unique up
to order and associates, that is, when R is a unique factorization domain (UFD).
This case has been studied extensively, and there are many excellent accounts of the
theory ([14, 17, 28—30], for example). In this paper, we investigate various related
factorization properties weaker than unique factorization. Our goal is to give a
careful study of these properties and to give many examples, each as elementary as
possible.

We first define the various factorization properties which we will study here.
Following Cohn [13], we say that R is atomic if each nonzero nonunit of R is a pro-
duct of a finite number of irreducible elements (atoms) of R. We say that R satisfies
the ascending chain condition on principal ideals (ACCP) if there does not exist an
infinite strictly ascending chain of principal integral ideals of R. The domain R is
a bounded factorization domain (BFD) if R is atomic and for each nonzero nonunit
of R there is a bound on the length of factorizations into products of irreducible
elements. We say that R is a half-factorial domain (HFD) is R is atomic and each
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factorization of a nonzero nonunit of R into a product of irreducible elements has
the same length. This concept was introduced by Zaks in [33]. The domain R is an
idf-domain (for irreducible-divisor-finite) if each nonzero element of R has at most
4 finite number of nonassociate irreducible divisors. They were introduced by
Grams and Warner in [23]. We will be mainly interested in atomic idf-domains; they
are precisely the domains in which each nonzero nonunit has only a finite number
of nonassociate divisors (and hence, only a finite number of factorizations up to
order and associates). We will call such a domain a finite factorization domain
(FFD). In general, -

HFD
UFD = FFD =— BFD =— ACCP = atomic.

N\

idf-domain

Examples will be given to show that no other implications are possible.

In the first section, we investigate atomic domains and the ACCP property. We
also study several other factorization properties related to atomic domains and con-
sider the question of when the polynomial ring R[X] is atomic. Section 2 studies
BFD’s, while we consider HFD’s in the third section. In the fourth section, we
discuss idf-domains. The fifth section studies FFD’s. In the final section, we in-
vestigate when these various factorization properties are preserved by ascent or des-
cent for an extension RC T of integral domains with U(T)N R = U(R).

General references for any undefined terminology or notation are [6, 17, 18 or
26]. For an integral domain R, R* is its set of nonzero elements, U(R) its group of
units, and R’ its integral closure. The set of positive elements of a partially ordered
abelian group G will be denoted by G*. The set of nonzero principal integral ideals
of R will be denoted by Prin(R); Prin(R) is a partially ordered monoid under inclu-
sion. Throughout, ideal will always mean integral ideal. These factorization proper-
ties may also be interpreted as properties of G(R), the group of divisibility of R.
Here, G(R) is the abelian group K*/U(R), written additively, and partially ordered
by eaUR)=bU(R) if and only if a[b (i.e., ba 'eR). (Thus aR — aU(R) is an
order-reversing isomorphism from Prin(R) to G(R)".) For example, R is a UFD if
and only if G(R) is order isomorphic to a direct sum of copies of Z with the usual
product order. Several examples involve monoid domain constructions. Given an in-
tegral domain R and torsionless grading monoid S, let R[X; S]1={Y ¢, X° | a,eR
and se S} with X*X'=X**’. An excellent reference for monoid domains is [19].
Throughout, Z, @, R, and C denote the integers, rational numbers, real numbers,
and complex numbers, respectively.
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1. Atomic domains and ACCP

An integral domain R is atomic if each nonzero nonunit of R is a product of ir-
reducible elements (atoms) of R. It is well known that any UFD or Noetherian do-
main is atomic. At the other extreme, a domain need not have any irreducible
elements at all. For example, a valuation domain whose maximal ideal is not prin-
mreducible elements. Another example of an integral domain with no
irreducible elements is the monoid domain C[X; ©']. Other examples may be con-
structed from these via the D+ M construction (cf. the proof of Proposition 1.2).
The easiest and usual way to show that a domain is atomic is to show that it satisfies
some chain condition on ideals; the most common one is ACCP. Hence any Krull

omain, and more generally, any Mori domain (ACC on integral divisorial ideals)
is atomic. Somewhat surprisingly (cf. [13, Proposition 1.1]), the converse is not
true; an atomic domain need not satisfy ACCP, but examples are hard to come by.
The first such example is due to Grams [21]. For completeness and future reference,
we include Grams’ example. In [35], Zaks has also given several examples of atomic
domains which do not satisfy ACCP.

Example 1.1 (Grams [21]). Let F be a field and T the additive submonoid of Q7
generated by {1/3,1/(2-5),..., 1/(2jpj), ...}, where py=3, p; =5, ... is the sequence
of odd primes. Let R be the monoid domain F[X; T] and N={fe R | fhas nonzero
constant term}. Then 4 =F[X; T]y is an atomic domain which does not satisfy
ACCP. Note that A4 is one-dimensional [19, Theorems 21.4 and 17.1] and quasilocal

since N=R— M, where M={ fe R | f has zero constant term} is a maximal ideal of R.

We next determine when the D+ M construction (cf. [8]) yields atomic domains
or domains which satisfy ACCP. Proposition 1.2 may be us¢d to construct more
examples of domains which are atomic but do not satisfy ACCP.

Proposition 1.2. Let T be an integral domain of the form K+ M, where M is a
nonzero maximal ideal of T and K is a subfield of T. Let D be a subring of K and
R=D+ M. Then:

(a) R is atomic if and only if T is atomic and D is a field,

(b) R satisfies ACCP if and only if T satisfies ACCP and D is a field.

Proof. First suppose that D is not a field. Then m =d(m/d) for each m e M and
d e D*. Thus no element of M is irreducible. Hence if R is either atomic or satisfies
ACCP, D must be a field. So let D (=k) be a field.

(a) Up to multiplication by a « € K* (resp., a € k*), each element of T (resp., R)
has the form m or 1+m for some m e M. Each of these elements is irreducible in
R if and only if it is irreducible in T (cf. [16, Lemma 1.5; 27]). If x is a product
of irreducibles, we may assume that each irreducible factor has the form m or 1+ m
for some m e M. Thus x is a product of irreducible elements in R if and only if it
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is a product of irreducible elements in 7. Hence R is atomic if and only if T is
atomic.

(b) We first observe that a principal ideal of R or T may be generated by either
m or 1+m for some meM. Let m,neM. 1t is easily verified that (1+m)RC
(I+nmMRe(l+mTC(U+n)T,mRCA+n)RemTC(1+n)T,and mRCnR=mTCnT.
Also, if mTCnT, then mR C(an)R for some o € K*. Hence, to each chain of prin-
cipal ideals of length s in R starting at mR (resp., (1+ m)R), there corresponds a
chain of principal ideals of length s in T starting at mT (resp., (1+m)T), and con-
versely. Thus R satisfies ACCP if and only T satisfies ACCP. [

The D+ M construction has been studied extensively since it has proven to be an
excellent technique for constructing counterexamples. The classical situations are
when either 7 is a valuation domain, for example, 7=K[ X ], or T=K[X], where
M= XT [15]. The general construction has been studied systematically in [8, 4, 16].
Another important case is when T=K[X;S]=K+ M is a monoid domain with
U(S) = {0} and maximal ideal M= {fe T | f has zero constant term}. We note that
for any field K and abelian group G, there is a quasilocal Krull domain of the form
T= K+ M with divisor class group CI(T)= G [4, Remark 3.8(3)]. Often, T=K+M
will be picked to be a UFD of Krull domain and D =k a subfield of K. In this case,
R = k+ M always satisfies ACCP, but R is not a Krull domain unless k = K. Suitable
choices for K and D give R various properties. For example, R is Noetherian if and
only if 7'is Noetherian, D is a field, and [K : D] is finite [8, Theorem 4]. Specifically,
let T=R[X]=R+ XR[X]. Then R=Q+ X R[X] is non-Noetherian, but satisfies
ACCP, and hence is atomic. Also, if 7 is integrally closed, then R=D+ M is in-
tegrally closed if and only if D is integrally closed in K. Note that Grams’ domain
A (Example 1.1) has the form F+ M,,; hence, for any subfield k of F, k+ M, is
an atomic domain which does not satisfy ACCP.

The difference between an integral domain R being atomic or satisfying ACCP
is best seen in terms of Prin(R) or G(R). The domain R satisfies ACCP if and only
if each chain in Prin(R) is finite; while R is atomic precisely when for each xe R*,
some maximal chain starting at (x) is finite (this follows since there are no principal
ideals between (¥)C (z) if and only if y/z is irreducible). Irreducible elements of R
correspond to minimal positive elements of G(R). Thus R is atomic if and only if
each positive element of G(R) is a finite sum of minimal positive elements. Also,
R satisfies ACCP if and only if there does not exist an infinite strictly decreasing
sequence of positive elements in G(R).

It is well known that an integral domain R satisfies ACCP if and only if
ﬂ (@,) = {0} for each strictly descending chain (a;) D (a,)D--- of principal ideals of
R. (To see this, observe that a strictly ascending chain (b;) C(b,) C:-- of nonzero
principal ideals of R yields a strictly descending chain (a;) D (a,) D+ of principal
ideals of R with [ (a,)# {0}, where each a,=bb, !. The converse is similar.)
Hence, if R satisfies ACCP, then [)(a") = {0} for each nonunit @ € R. However,
the converse is false since any completely integrally closed (c.i.c.) or one-dimensional
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domain satisfies { ] (a”) = {0} for each nonunit @, but need not satisfy ACCP (for
example, a one-dimensional nondiscrete valuation domain or the ring of entire func-
tions [18, Exercise 7, p. 285)).

The localization of an atomic domain or a domain satisfying ACCP need not
satisfy that property. In [21, Example 1], Grams constructs an almost Dedekind do-
main D which satisfies ACCP. She observes that D[X] also satisfies ACCP, but its
localization D(.X'), which is a Bézout domain, does not satisfy ACCP (in fact, is not
even atomic) since an atomic Bézout domain is a PID. Probably the simplest exam-
ple of an integral domain satisfying ACCP but with a localization which does not
satisfy ACCP is the monoid domain R=Kk[X; T], where k is a field and T=
{ge@|g=1}U {0} an additive submonoid of Q* (cf. [19, p.189]). For S=
{x* \ teT}, Ry=k[X; Q] does not satisfy ACCP (see Example 2.7(a) for more
details). Another example of a domain satisfying ACCP but with a localization that
does not satisfy ACCP is given in [24, Example, p. 275]. Several more examples are
given in Example 2.7 and in later sections.

It is well known that R satisfies ACCP if and only if R[{X}] satisfies ACCP for
any family of indeterminates {X,} (cf. [19, Theorem 14.6]). A similar result holds
for R[X]. More generally, the group ring R[X; G] satisfies ACCP if and only if
R satisfies ACCP and each nonzero element of the torsionfree abelian group G is
W]. The problem of determining when the monoid
domain R[X; S] is an atomic domain or satisfies ACCP is still open. If R[X] is
atomic, then certainly R is atomic. We have been unable to determine if the converse
is true. One problern is that in trying to look for a counterexample there are very
few known examples of atomic domains which do not satisfy ACCP. (It may be
verified that A[X] is atomic for Grams’ domain A given in Example 1.1.) So we
ask the following: ' : i

Question 1. Is R[X] atomic when R is atomic?

We next give some additional factorization conditions that R satisfies when R[X]
is atomic. If R[X] is atomic, then for each a,be R*, we can write aX+b=
—_— . . . —————
"a,--a,(cX+d), where each factor is irreducible. Thus a=a,---a,cand b=a,---a.d,
“Where ¢ and d have no (nonunit) common factors, i.e., ged(c,d)=1. This observa-
tion motivates our next definition. We say that an integral domain R is strongly
atomic if for each a,beR* we can write a=a;:--a,c and b=a, - a,d, where
ais---,a,€R (s=0) are irreducible and ¢, d € R satisfy gcd(c,d)=1. The domain R
is a weak GCD-domain if for each a, b € R*, there are ¢,a’,b’e R so that a =ca’ and
b=cb’, where gcd(a’, b’)=1. Finally, R is a LT-domain (lowest terms domain) if for
each a, b e R*, there are ¢,d € R* with a/b=c/d and gcd(c,d)=1. We then have the
following theorem:

Theorem 1.3. Let R be an integral domain. Then:
(@) if R satisfies ACCP or R[X] is atomic, then R is strongly atomic,



6 D.D. Anderson et al.

(b) if R is weak GCD-domain, then R is a LT-domain,
(©) R is strongly atomic if and only if R is an atomic weak GCD-domain.

Proof. (a) Clearly R satisfies ACCP = R[X] satisfies ACCP = R[X]is atomic = R
is strongly atomic. The proof of part (b) is straightforward and hence will be

omitted.
(c)_Suppose that R is strongly atomic. Let @ € R* be a nonunit. Write a=a, -+ a,c
& __and @%=a,---a,d, where each g; is irreducible and gcd(c,d)=1. Then a%---aszc2=

a*=a,---a.d, so d=a;++a,c®. But gcd(c,d) =1, so c is a unit. Hence a is a product
of irreducible elements. Thus R is atomic. The remainder of the proof is straight-
forward. O

Along these lines, we remark that if given a,...,a,€ R*, there are ¢,...,c,€R
with no common factors and irreducible by, ..., b,,€ R such that a¢;=5b,:--b,,¢c; for
each 1 =i<n, then T=R[{X,}] is atomic for any family {X,} of indeterminates.
Given fe T, we can first factor finto a product of polynomials f; whose only fac-
tors of less degree are constants. By hypothesis, we can then factor each f; into a
product of irreducibles. We record this observation as the following theorem:

Theorem 1.4. The following statements are equivalent for an integral domain R.
(1) For each n=2 and a,...,a,€R*, there are cy,...,c,€R with no common
factors and irreducible by, ...,b,, € R such that a;=b,--- b,,c; for each 1 <i=<n.
2) R[{X,}] is atomic for any family {X,} of indeterminates.
(3) R[X, Y] is atomic for indeterminates X and Y.

Proof. We have already observed that (1) = (2), and (2) = (3) is clear. For (3) = (1),
we first observe that for any field F and any b, ay, ...,a,€ F*, ¢, X"+ +a, X+ay+
bY e F[X, Y] is irreducible. Hence, given ay,...,a,€ R*, anX”’2+ et ayt+a Y=
by by(cy, X" 24 ---4+c,+, Y), where by, ...,b,, € R are irreducible and ¢y, ...,c,€ R
have no common factors, since R[X, Y] is atomic. Thus (1) holds. [

Also of interest are those atomic domains with only a finite number of non-
associate irreducible elements. They were first studied by Cohen and Kaplansky in
[12] and have been studied by the first author in [1]. The following characterization
is a special case of [1, Theorem 2].

Theorem 1.5. The following statements are equivalent for an integral domain R.

(1) R is an atomic domain with a finite number of nonassociate irreducible
elements.

(2) The semigroup of integral ideals of R is finitely generated.

(3) R is a one-dimensional semilocal Noetherian domain such that for each non-
principal maximal ideal M of R, R, is analytically irreducible and R/M is
Sinite. [
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If an atomic domain R has only finitely many nonassociate irreducibles, then of
course G(R) is finitely generated. Somewhat surprisingly, the converse is false.
From [20], it follows that G(R) is finitely generated for R a Noetherian domain if
and only if R is one-dimensional and semilocal with R,, analytically unramified
and R/M finite for each nonprincipal maximal ideal M of R. In addition to
semilocal PID’s, typical examples of atomic domains with only a finite number of
nonassociate irreducible elements include F|+ XF,[X], where F;CF, are finite
fields, and F[ X", X"*!,...] for F a finite field. For a further investigation of these
domains by Mott and the first author, see [3].

2. BFD’s

In this section, we study bounded factorization domains. We recall that an atomic
domain R is a bounded factorization domain (BFD) if for each nonzero nonunit x
of R, there is a positive integer N(x) such that whenever x=x;--- x, as a product of
irreducible elements of R, then n=<N(x). Clearly a UFD is a BFD, and a BFD
satisfies ACCP. We first give an example of an integral domain which satisfies
ACCP, but is not a BFD.

Example 2.1. Let & be a field and T the additive submonoid of Q@ generated by
{1/2,1/3,1/5,...,1/p;, ... }, where p; is the jth prime. Then the monoid domain
R=k[X; T] is a one-dimensional domain which satisfies ACCP, but is not a BFD.
To verify this, we first note that each nonzero a € T may be written uniquely as
a=ng+n/p;+ - +n;/p;, where n,eZ*, each O<n;<p;—1 (i>0), and n;#0 (cf.
[21, Lemma 1.1]). Thus each X /% is irreducible, and hence R is not a BFD since
X =(XVP)Pi for each prime p;- However, R does satisfy ACCP. For a 0#f=
b X+ - +b,X"eR with q;<---<a, and b, #0, write f(f)=a,. If ACCP
fails, then there is a strictly increasing chain (f})C (f;) C --- of principal ideals in R.
Then each f,=f,, &+, for some nonunit g, € R. Hence each (/,)=p(f,+1)+
B(g,+1), and each term is positive. Then in T, we have B(f1)>f(f)> --- with
each B(f)—B(f,+1)€ T, but this is impossible by the above-mentioned unique
representation of each nonzero ae 7.

On the positive side, Noetherian domains and Krull domains are BFD’s. Several
other proofs of these two facts will be given in later sections.

Proposition 2.2. A Noetherian domain or a Krull domain is a BFD.

Proof. Suppose that R is either a Noetherian domain or a Krull domain. Let x be
a nonzero nonunit of R. Let P, ..., P, be the height-one prime ideals of R that
contain x. If y | x for some nonunit y€ R, then y is an element of some P; since
then (x) C(») and any height-one prime ideal of y is also a height-one prime ideal
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of x. Hence, if x=x, - X, with m=kn and each x; is a nonunit of R, then xe Pl-"
for some 1=<i=<n. If there is no bound on the length of factorizations of x, then
xel) P,-k: {0} for some 1<i=<n, a contradiction. [

Another class of BFD’s may be obtained as follows. Let R be a quasilocal domain
with maximal ideal M. If [ | M"={0}, then R is a BFD. For if x=x,---X,, with
each x; a nonunit of R, then xe M". However, the converse is false; a quasilocal
BFD may have [ | M" = {0}. One may obtain such an example, which is actually a
Krull domain, by localizing an example (due to Eakin) in [25, Example 5.7]. More
[ generally, we have the following proposition:

Proposition 2.3. Let R be an integral domain such that [\ M" = {0} for each max-
imal ideal M of R and ﬂ M, ={0} for any countably infinite set {M,} of maximal
ideals of R. Then R is a BFD. [

We next give another characterization of BFD’s. For any atomic integral domain
R, we define the ‘length function’ /z: R*—Z* U {e} by lx(x)=0 if xe U(R) and
[g(x)=sup{n | x=x, -+~ x, with each x;€ R irreducible} for x a nonunit of R. Then
Ip(xy) = [p(x) + [x(p) for all x, ye R* and R is a BFD if and only if /z(x)< o for all
xe R*. (Note that in general we may have [x(xy)>Ig(x)+/zr(¥) for particular
X, y€ R*. Consider R =k[X? X?3], where k is a field; then /x(X?)=Ix(X?) =1, so
3=Ip(X %) >Ix(X?) + Ix(X*)=2.) We next collect some other characterizations of
BFD’s.

Theorem 2.4. The following statements are equivalent for an integral domain R.

(1) R is a BFD.

(2) For each nonzero nonunit x € R, there is a positive integer N(x) such that
whenever x=Xx, +++ X,,, with each x; a nonunit of R, then n=<N(x).

(3) There is a function [: R¥*— Z* such that I[(x)=0 if and only if xe U(R), and
Ixy)=I(x)+I(y) for all x,y e R*.

Proof. (1)=(2) is clear. (2)=(1). We need only show that R is atomic. If R is not
atomic, then there are arbitrarily long factorizations in R, a contradiction. (1)= (3).
Let /=1y as defined above. (3)=(2). Let N(x) =/(x). Then x=x, --- x,,, with each x;
a nonunit of R, implies that n</(x;)+ -+ +1(x,)</(x;---x,)={(x). O

This concept is easily interpreted in Prin(R) and G(R). An integral domain R is
a BFD if and only if for each xe R* there is a bound on the lengths of chains in
Prin(R) starting at (x). In G(R), each positive element x must be the sum of at most
a fixed number (depending on x) of (minimal) positive elements.

We next use the length function characterization for BFD’s to show that the BFD
property is preserved by adjoining an indeterminate.
G o A ) :\\ "Ka‘:_".
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Proposition 2.5. The following statements are equivalent for an integral domain R.
(1) R is a BFD.
(2) R[X] is a BFD.
(3) R[X] is a BFD.

Proof. Clearly (1) is implied by either (2) or (3). Conversely, suppose that R
is a BFD. Then /,:R[X]*—Z" defined by [ ,(ay+ --- +a,X™")=Ig(a,)+n and
L: R[X]*— Z" defined by l,(a, X"+ ---)=Ig(a,) + n each satisfy the conditions of
Theorem 2.4(3). Hence R[X] and R[X ] are each BFD’s. [

Let 7T be a BFD with subring R. Then /=1 | g« defines a function R*—Z*. Now
/ satisfies the conditions in Theorem 2.4(3) if and only if U(T) N R =U(R). Thus R
is a BFD if T'is a BFD and U(T) " R =U(R). Note, though, that even in this case
we need not have /= /. For example, let k be a field, T=k[X], and R =k[X? X°].
Then /x(X?) =Ix(X?) =1, while /(X?)=2 and /(X?)=3. Thus a domain R may
have many ‘length functions’ which satisfy the conditions of Theorem 2.4(3). These
observations together with Proposition 2.5 yield the following proposition:

Proposition 2.6. Let R be a BFD and {X,} any family of indeterminates. Then
any subring T of R[{X,}] which contains R is a BFD.

Proof. By Proposition 2.5, any polynomial ring in finitely many indeterminates
over a BFD is again a BFD. Since each polynomial involves only a finite number
of indeterminates, A = R[{X,}] is also a BFD. Thus T is a BFD since U(T) = U(A)
(=UR)). O

We next construct three very different BFD’s, each with a localization or integral
closure which is not a BFD.

Example 2.7. (a) Let & be a field, T={geQ |g=1} U {0} an additive submonoid
of @*, and R=k[X;T] the monoid domain. Then R is a one-dimensional BFD
since each nonunit factor has degree at least one. However, its integral closure
R’ =k[X; Q"] [19, Corollary 12.11] is not a BFD; in fact, R’ is not even atomic
since X has no irreducible factors. Also, Rg=k[X;Q], where S={X’| teT}, is
not atomic since Rg is a GCD-domain [19, Theorem 14.2], but R does not satisfy
ACCP [19, Theorem 14.17]. (We could also use T={reR|r=1} U {0}.)

(b) Let R be an integral domain with quotient field K. In [2, Corollary 7.6], we
showed that the domain I(K, R) = { fe K[X] | f(R)CR} of R-valued K-polynomials
satisfies ACCP (resp., is a BFD) if and only if R satisfies ACCP (resp., is a BFD).
Thus R=I(Q,7Z), the ring of integer-valued polynomials, is a two-dimensional
Prifer BFD, but some localization of R is not a BFD (since the localization R, at
a height-two maximal ideal M is a two-dimensional valuation domain, which is not
even atomic). It is also interesting to note that while R is c.i.c. (cf. [2, Theorem 7.2]),
some localization R, is not c.i.c.
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(3) Let Z be the ring of all algebraic integers. Then R=Z+ XZ[X] is a two-
dimensional BFD by [2, Example 5.1] and the remarks before [2, Theorem 7.5].
However, R’=7[X] is not a BFD since the Bézout domain Z is not a BFD. (We
could also let R=Z+XZ[X].)

Our next result about the D + M construction is the analogue of Proposition 1.2.
As an application, we see that for any pair of fields K;CK,, K+ XK,[X] and
K+ XK,[X] are each BFD’s. Note that they are not Noetherian if [K,: K] is in-
finite.

Proposition 2.8. Let T be an integral domain of the form K+ M, where M is a
nonzero maximal ideal of T and K is a subfield of T. Let D be a subring of K and
R=D+M. Then R is a BFD if and only if T is a BFD and D is a field.

Proof. First suppose that R is a BFD. Then D must be a field as in Proposition 1.2.
The proof of Proposition 1.2 shows that R is a BFD if and only if 7is a BFD. [

3. HFD’s

We recall that R is a half-factorial domain (HFD) if R is atomic and for each
nonunit xeR*, if x=x;--Xx,=y;"-*y,, with each x;, y; irreducible in R, then
m=n. Clearly a UFD is a HFD and a HFD is also a BFD, and hence satisfies ACCP.
Also, any Krull domain R with CI(R)=Z/27Z is a HFD [34, Theorem 1.4]. However,
the Krull domain R:k[X3,XY, Y3], where k is a field, is not a HFD since XY,
X3, and Y? are each irreducible in R and (XY)?*=X3Y? (note that CI(R) = Z/32).
Elementary examples of non-Krull HFD’s are Z[V—_3] [34, p.285] and R+ X C[X]
(see below). Two of the simplest examples of integral domains which are not HFD’s
are k[X 2 X 3], where k is a field, since X? and X3 are each irreducible and
(X*?=(X??, and Z[2)/2] since 2 and 22 are each irreducible and (2)/2)>=2>. In
terms of Prin(R), R is a HFD if and only if for each x € R* there is a maximal chain
in Prin(R) starting at (x) and any two such maximal chains have the same length.
In G(R), this means that any positive element is a sum of minimal positive elements
and any two such sums have the same number of summands.

HFD’s were introduced by Zaks in [33], who gave a detailed study of Krull HFD’s
in terms of their divisor class groups in [34]. Most of the work on HFD’s has been
for Dedekind or Krull domains, with major emphasis on factorization in algebraic
number rings. In fact, much of this work is motivated by the result of Carlitz [9]
that an algebraic number ring is a HFD if and only if it has class number less than
or equal to two. A related concept is that of a congruence half-factorial domain
(CHFD): an atomic integral domain in which any two factorizations of an element
into a product of irreducibles have the same length modulo  (for some fixed r>1).
These domains have recently been introduced and studied by Chapman and Smith
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in [10] and [11]. Clearly a HFD is a CHFD, but there are CHFD’s which are not
HFD’s. We will not consider CHFD’s, but we note that [11] has an excellent
bibliography on HFD’s.

HFD’s may also be characterized in terms of a length function analogous to that
for a BFD as in Section 2. By [34, Lemma 1.3], an integral domain R is a HFD
if and only if there is a ‘length function’ /: R*— Z* with /(xy)=1(x) + () for all
x,yeR* im!=7", and I(x) =1 if and only if x is irreducible. We note that R is a
HFD if and only if /z(xy) =Ig(x)+ Iz(y) for all x, ye R*. .

In [2, Theorem 5.3], we showed that for fields K, CK,, R=K,;+ XK,[X] is
always a HFD. Similarly, R=K,;+ XK,[ X ] is always a HFD. More generally, the
subring R=K,+ M is a HFD whenever T=K,+ M is a UFD. These are special
cases of our next result on when the D+ M construction yields a HFD.

Proposition 3.1. Let T be an integral domain of the form K+ M, where M is a
nonzero maximal ideal of T and K is a subfield of T. Let D be a subring of K and
R=D+ M. Then R is a HFD if and only if D is a field and T is a HFD.

Proof. Asin Proposition 1.2, D is necessarily a field. The proof of Proposition 1.2
shows that a factorization into irreducibles in R has the same length as such a fac-
torization in 7. Hence R is a HFD if and only if T is a HFD. O

As a generalization, let {K,} be an increasing sequence of subfields of a field K,
and let R=Y K, X"CK[X]. Then R is always a BFD, and hence satisfies ACCP;
but R is not a HFD unless K, =K, for all n=1, i.e., R=K,+ XK,[X]. For sup-
pose that ae K,— K,_, (n=2), then aX" and a ' X" are each irreducible in R, but
(@X™)(a"'X")=X?" are factorizations of length 2 and 2n (=4), respectively.
(Similarly, we could let R=[[K,X"CK[X].)

In general, HFD’s do not behave very well under extensions. For example, while
R is a HFD whenever R[X] is a HFD; the converse need not hold. In [34, Theorem
2.4], it is shown that for a Krull domain R, R[X] is a HFD if and only if either R
is a UFD or CI(R)=2/2Z. In [2, Example 5.4], we showed that R=R+ X C[X] is
a HFD, but R[Y] is not a HFD since (X(1+1Y))(X(1-iY))=X2(1 + Y?) are fac-
torizations into irreducibles of different lengths.

4. idf-domains

In this section, we discuss idf-domains. We recall that R is an idf-domain (or R
has the idf-property) if each nonzero element of R has at most a finite number of
nonassociate irreducible divisors. For example, any UFD is an idf-domain. At the
other extreme, a domain with no irreducible elements is vacuously an idf-domain.
Some more examples of idf-domains will be given in the next section. Since an idf-
domain need not be atomic, the idf-property does not imply any other of our fac-
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torization properties. Note that the domain R is an idf-domain if and only if each
nonzero principal ideal of R is contained in at most a finite number of ideals which
are maximal with respect to being principal. In terms of the group of divisibility of
R, G(R), this may be recast as each positive element of G(R) is greater than at most
a finite number of minimal positive elements.

These domains were introduced in [23] by Grams and Warner in relationship to
a problem in Bourbaki [5, p.87, Exercise 23] (cf. also [22]). Among other things,
they show that if R={)V, is a domain of finite character and each valuation
domain V,, except possibly one of them, is rank one discrete, then R is an idf-
domain [23, Proposition 1]. In particular, a Krull domain is an idf-domain. We
pause to give two nontrivial examples of integral domains which are nor idf-
domains.

Example 4.1. (a) Let R=R+ X C[X]. Then R is Noetherian, but R is not an idf-
domain. In fact, {(r+i)X|re R} is an infinite family of nonassociate irreducible
divisors of X2. We have already observed that R is a HFD, so a HFD or a BFD
need not be an idf-domain.

(b) Let k be a field and T={ge @ | ¢g=1}U {0} an additive submonoid of Q*.
Then R=k[X;T] is not an idf-domain since X!*9 are nonassociate irreducible
divisors of X? for each g€ @ with 0<g< 1. In Example 2.7(a), we showed that R
is actually a BFD. (Again, we could use T={reR|r=1}U{0}.)

We have been mainly interested in atomic domains in this paper. By the above
examples, an atomic domain (in fact, a Noetherian domain) need not be an idf-
domain. We next show how to construct examples of idf-domains using the D+ M
construction. Example 4.1(a) above is a special case of part (a) of our next propo-
sition.

Proposition 4.2. Let T be an integral domain of the form K+ M, where M is a
nonzero maximal ideal of T and K is a subfield of T. Let k be a subfield of K and
R=k+ M. Then:

(a) Suppose that M contains an irreducible element. Then R is an idf-domain if
and only if T is an idf-domain and the multiplicative group K*/k* is finite.

(b) Suppose that M contains no irreducible elements. Then R is an idf-domain
if and only if T is an idf-domain. In particular, if T is quasilocal, then both T and
R are idf-domains.

Proof. (a) We first note that an element of M is irreducible in R if and only if it
is irreducible in 7. Let m € M be irreducible. First suppose that R is an idf-domain.
Then am | m? for all @€ K*. Note that am and fm are irreducible in both R and
7, and that they are associates in R if and only if & and f# lie in the same coset in
K*/k*. Hence K*/k*is finite. Let x€ T. By multiplying by a suitable o € K*, we may
assume that x e R. Let X, ..., X, be the distinct nonassociate irreducible divisors of x
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in R. It is easily verified that any irreducible divisor of x in 7 is associated to one
of the x;s. Thus T is also an idf-domain. Conversely, suppose that 7 is an idf-
domain and that K*/k* is finite. Let xe R. Let x, ..., X, be a complete set of non-
associate irreducible divisors of x in 7, which we may assume are all in R, and let
ay, ..., 0 be a set of coset representatives of K*/k*. Then any irreducible divisor of
x in R is an associate of some a,x;. Hence R is an idf-domain.

(b) Since M has no irreducible elements, an irreducible element in 7 (resp., in R)
has the form a+m for some aeK* (resp., aek*) and me M. Hence, up to
associates, each has the form 1+ m for some m e M. It is then easily verified that
{1+ m;,...,1+m,} is a complete set of nonassociate irreducible divisors of a given
element with respect to R if and only if it is a complete set of nonassociate irreduci-
ble divisors with respect to 7. For the ‘in particular’ statement, note that in this case
each 1+ m is a unit, so neither R nor T has any irreducible elements. [

We can make several interesting observations from this proposition. Unlike our
earlier results (Propositions 1.2, 2.8, and 3.1), 7 may be an idf-domain while R is
not an idf-domain. The answer also may depend upon the maximal ideal M. Note
that in part (a), the multiplicative group K*/k* is finite (even finitely generated) if
and only if either K=k or K is finite (Brandis’ Theorem [7]). Thus for suitable
choices of K and £, as for example in Example 4.1(a), R may be Noetherian, atomic,
or a HFD, and yet not be an idf-domain.

Also, unlike our earlier results, R may be an idf-domain when D is not a field
(for example, when D is semilocal PID or D has no irreducible elements), and this
is independent of 7. However, such an R is never atomic. We state this as the
following proposition:

Proposition 4.3. Let T be a quasilocal integral domain of the form K+ M, where
M is the nonzero maximal ideal of T and K is a subfield of T. Let D be a subring
of K and R=D+ M. If D is not a field, then R is an idf-domain if and only if D
has only a finite number of nonassociate irreducible elements.

Proof. Let d be a nonzero nonunit of D. Then m =d(m/d) shows that no element
of M is irreducible and d divides each element of M. Also, x=d+m=d(1+m/d)
and 1+ m/d e U(R) (since T is quasilocal) shows that x is irreducible in R if and only
if d is irreducible in D. Thus R is an idf-domain if and only if D has only a finite
number of nonassociate irreducible elements. [

We next consider ascent and descent of the idf-property. In general, the idf-
property is not very stable. Propositions 4.2 and 4.3 may be combined to show that
a localization of an idf-domain need not be an idf-domain. Let T=R[X ] =R+ M,
where M=XR[X]. Then R=Z3+ M is an idf-domain by Proposition 4.3. For
S=7Z-{0}, Ry=Q + M is not an idf-domain by Proposition 4.2 since R*/Q * is in-
finite. If R[X] is an idf-domain, then clearly R is also an idf-domain. It would be
interesting to know if the converse is also true. We ask the following:



14 D.D. Anderson et al.
Question 2. Is R[X] an idf-domain when R is an idf-domain?

One case in which the answer is positive is when R is a valuation domain. Then
RIX]=R(X)NK[X] (=RX)N (ﬂK[X](f))), so R[X] has finite character since
R(X) is a valuation domain, and hence R[X] is an idf-domain [23, Proposition 1].
This observation also answers the question raised in [23, p.275], and subsequently
answered by Gilmer and Warner [23, added in proof], for an example of a GCD-
domain R of finite-character that is not a Bézout domain or a UFD; just let
R =VI[X], where Vis a nondiscrete valuation domain. (Another example of a GCD-
domain of finite-character which is not a Bézout domain or a UFD is given in [31].)
In the next section, we show that Question 2 also has a positive answer when R is
an atomic idf-domain.

5. FFD’s

We recall that R is a finite factorization domain (FFD) if each nonzero nonunit
of R has only a finite number of nonassociate divisors and hence, only a finite
number of factorizations up to order and associates. Thus a FFD is both a BFD and
an idf-domain. (In Theorem 5.1, we show that FFD’s are precisely the atomic idf-
domains.) For example, any UFD is a FFD. Other examples include the atomic in-
tegral domains mentioned in Section 1 which have only a finite number of non-
associate irreducible elements. A less trivial example of a FFD is any subring R of
k[{X,}], where k is either a finite field or Z, and {X,} is any family of indeter-
minates. (In fact, each element of R has only a finite number of divisors.) At the
other extreme, a domain with no irreducible elements is vacuously an idf-domain,
but not a FFD. Also, a FFD need not be an HFD; consider R = k[X? X 3], where
k is a field. Conversely, the HFD R =R+ X C[X] is not a FFD since it is not an idf-
domain (Example 4.1(a)). Note that an integral domain R is a FFD if and only if
each nonzero principal ideal of R is contained in only a finite number of principal
ideals. In G(R), this translates as each positive element has only a finite number of
positive summands.

Our next theorem gives the expected result that an atomic idf-domain is actually
a FFD. Since a Krull domain is both atomic and an idf-domain, this theorem also
gives another proof of the fact that a Krull domain is a BFD (Proposition 2.2).
(Note, however, that a Noetherian domain need not be a FFD.)

Theorem 5.1. Let R be an integral domain. Then R is a FFD if and only if R is an
atomic idf-domain.

Proof. Clearly a FFD is an atomic idf-domain. Conversely, suppose that R is an
atomic idf-domain. Let x € R be a nonzero nonunit. Suppose that x,, ..., X, are the
nonassociate irreducible factors of x. Suppose that in a factorization of x, x=
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uxi' - x5y, we always have 0<s;<N, for each 1 <i<n. Then there is a bound on
the number of nonassociate factors of x. So suppose that this is not the case. Then
some s;, say s;, is not bounded. Thus we can write for each k=1, x=ux* --- x;",
where u, € U(R) and s;; <S5 <83;< ---. Suppose that in this set of factorizations,
{sy;} is bounded for each i with 1 <i=n. Then since there are only finitely many
choices for sy, ...,84,, We must have s, =5;,,...,5, =5, for some j>k. But then
U XPX52 e X =X =y X{K X542 -+ xpkns so cancelling  yields  u;xi" =u,xj*', where
5j1>5k;, a contradiction. Hence, some set {sy;} for a fixed / with 1<i<n is un-
bounded, say for i=2. Then, by taking subsequences at each stage, we may assume
that 5;; <85 <$3;< '++ and §;,<$§p» <83, < ---. Continuing in this manner, we may
assume for each l=<i<n that s,;<s,;<s3<---. But then wuxj".--x3"=x=
U xi? ++ x>, where each s1;<s,;, a contradiction. [J

Again, the D+ M construction yields more examples of FFD’s. For example, our
next proposition applies when either 7= K[X] or T is a quasilocal Krull domain of
the form K+ M, where K is a finite field.

Proposition 5.2. Let T be an integral domain of the form K+ M, where M is a
nonzero maximal ideal of T and K is a subfield of T. Let D be a subring of K and
R=D+ M. Then R is a FFD if and only if T is a FFD, D is a field, and K*/D* is
finite.

Proof. This follows directly from Proposition 2.8, Proposition 4.2(a), and Theorem
5.1. O

Let F;CF, be finite fields; then R=F,+ XF,[X] (or F;+XF,[X1]) is both a
FFD and a HFD, but R is a UFD if and only if F,=F,. Our next result also holds
for any family {X,} of indeterminates.

Proposition 5.3. Let R be an integral domain with quotient field K. Then R[X] is
an FFD if and only if R is an FFD.

Proof. Clearly R is an FFD whenever R[X] is a FFD. Conversely, suppose that R
isa FFD. Let 0# fe R[X]. We show that f has only finitely many nonassociate fac-
tors. We may assume that f is nonconstant since R is a FFD. Suppose that f has
an infinite number of nonassociate factors. Since in K[X], f has only a finite
number of nonassociate factors, there is an infinite set of nonassociate factors { f,,}
of fin R[X] with fiK[X]=/f,K[X] for each n=1. Let f=f,g,. Since the leading
coefficient of fis the product of the leading coefficients of f, and g,, this leads to
a factorization of the leading coefficient of f. Hence an infinite number of the f,’s
have associate leading coefficients, and thus we may assume that all the f,,’s have
the same leading coefficient. But if f; and f,, have the same leading coefficient and
JiK[X]=/1,K[X], then f;=f,, a contradiction. []
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An example of Grams [21, Example 2] may be used to show that a localization
of a FFD need not be an FFD. She constructs a Priifer domain R which satisfies
ACCEP and each of its localizations but one is a DVR, with the other one being a
rank one nondiscrete valuation domain, Hence R has finite character and thus is an
idf-domain. By Theorem 5.1, R is also a FFD. But that one localization is not even
atomic (but it is an idf-domain), and hence is not a FFD. (This gives another exam-
ple which shows that the classes of atomic domains, domains satisfying ACCP, and
BFD’s are not closed under localization.) A much more elementary example is the
following:

Example 5.4. Let &k be a field and T={n+i/n!|0<i<n!-1,7=0,1,...} an addi-
tive submonoid of @*. Then the monoid domain R = k[X; T] is a one-dimensional
domain which is a FFD, but not a HFD. R is a BFD since each nonconstant fe R
has deg f=1. Also, R is an idf-domain, and hence a FFD, since any factorization
of an fe R takes place in some polynomial ring X[X'/*']. However, R is not a HFD
since X°=X32X%2 and X and X*? are each irreducible. Let S={X’|teT}.
Then Ry=k[X;Q] is not even atomic. Also, R'=k[X; Q"] is not atomic.

6. Overrings and subrings

In this section, we determine which of the factorization properties are preserved
by ascent or descent for certain extensions of integral domains. We have already in-
vestigated how these properties behave with respect to polynomial extensions and
localizations. Of course, in general, not much can be said. Here, we will be par-
ticularly interested in the case in which RC T is an extension of integral domains
with either U(T)N R=U(R) or U(T)N K= U(R), where K is the quotient field of
R. In [21, Proposition 2.1 and Corollary], it was observed that R satisfies ACCP
whenever T satisfies ACCP and U(T)N R = U(R); in particular, R satisfies ACCP
whenever R’ satisfies ACCP. Similarly (as we have already observed in Section 2),
if U(T)NR =U(R), then R is a BFD whenever Tis a BFD. In particular, this is the
case when T'is integral over R. This gives the amusing generalization of Proposition
2.2 that any integral overring T (C K) of a Noetherian domain R is a BFD (since
R’ is a Krull domain) or that a subring R of a Noetherian domain or Krull domain
T is a BFD whenever T is integral over R.

Any extension RC T of integral domains induces an order-preserving monoid
homomorphism ¢ : Prin(R) — Prin(7T") by ¢(xR) =xT for each x € R *. It may be easily
verified that ¢ is injective if and only if U(T) N K = U(R) and that ¢ is injective on
chains if and only if U(T) N R = U(R). (Similar results also hold for ¢’ : G(R) —» G(T)
defined by ¢'(xU(R)) =xU(T) for each x e K*.) Clearly U(T) N R = U(R) whenever
UT)NK=U(R). However, the converse may fail; let R=R+XC[X] and T=
C[X]. Some cases in which U(T)NR=U(R) are: (1) RCT is integral (or more
generally, satisfies LO); (2) R and T are quasilocal with maximal ideals M and N,
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respectively, such that NNR=M; (3) R=F,[X;S]CT=F,[X;T] are monoid
domains with F;CF, fields and SCT monoids with U(T)NS=U(S); and (4)
R=TNL for L a field containing R.

We first consider an extension RC 7 of integral domains which satisfies U(T) N R =
U(R). We have already observed that R satisfies ACCP (resp., is a BFD) if T
satisfies ACCP (resp., is a BFD). However, 7 may be a UFD, FFD, or idf-domain
while R is not; let T=C[X] and R =R+ X C[X] (Example 4.1(a)). To show that the
HFD property is not preserved, let T=k[X] and R=k[X? X?] for any field k.
Note that in the last two examples RC T is integral, in fact, 7= R’. Finally, in con-
trast to the ACCP case, we show that the atomic property is not preserved.

Example 6.1. Let 7=F+ M,, be Gram’s example as in Example 1.1 (note the
change in notation from Example 1.1). Let R =F+ Ny, where N={f| f has non-
zero constant term} is a maximal ideal of F[X; W], where W is the additive sub-
monoid of Q™ generated by {1/2,1/4,...,1/2/,...}. Then U(T)N R = U(R) since T
and R are quasilocal and M,; N R=Ny. Then T is atomic while R is not atomic
since X has no irreducible factors. (For a pair of domains with the same quotient
field, let B=T[Y]and A=R+ YT[Y]. Then U(B) N A = U(A) and B is atomic while
A is not atomic.)

It is interesting to observe that with the stronger hypothesis that U(T)NK=
U(R), R is a FFD when T is a FFD. This follows easily from the characterization
of FFD’s in terms of Prin(R) and Prin(7") since ¢ is injective.

Conversely, we next investigate which factorization properties ascend from R to
T when U(T)NR=U(R). Let k be a field, S={ge Q| g=1} U {0}, R=k[X;S] the
monoid domain as in Example 2.7(a) and T=R’'=k[X;Q"]. Then R is a BFD and
U(T)N R=U(R), but Tis not even atomic. (This answers a question raised in [21,
p.325] as to whether R’ satisfies ACCP when R satisfies ACCP. Also, note that the
integral closure 4’ of Grams’ example A (Example 1.1) is not atomic.) Thus the
atomic, ACCP, and BFD properties need not ascend from R to 7. Example 5.4
shows that the above mentioned properties plus the idf-property and FFD properties
do not ascend from R to R’. Also, the UFD property does not ascend. Let R=
k[X?%Y? and T=k[X?% XY, Y?] for any field k. It is interesting to observe that in
each case the success or failure of the ascent or descent of a given factorization
property is exactly what one would intuitively expect from its characterization in
terms of Prin(R), Prin(7T"), and the injectivity of ¢.

We end the paper by considering these properties for locally-finite intersections.
It is easily verified and well known that a locally-finite intersection of domains each
satisfying ACCP again satisfies ACCP [32, Corollary 4]. A similar argument shows
that this also holds for BFD’s. (One can also see this as follows: Let {R,} be a
family of BFD’s each with length function 1,. If R= ﬂRa is a locally-finite inter-
section, then 1=} 1, is a well-defined finite-valued length function for R. Hence
R is a BFD.) This observation gives another proof of Proposition 2.2 since a Krull
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domain is by definition a locally-finite intersection of DVR’s. Thus a locally-finite
intersection of HFD’s or UFD’s need not be a HFD or a UFD. Several examples
are given in [23] to show that a locally-finite intersection of idf-domains need not
be an idf-domain.

References

[1] D.D. Anderson, Some finiteness conditions on a commutative ring, Houston J. Math. 4 (1978)
289-299.
[2] D.D. Anderson, D.F. Anderson and M. Zafrullah, Rings between D[X] and K[X], Houston J.
Math., to appear.
[3] D.D. Anderson and J. Mott, Cohen-Kaplansky domains: integral domains with a finite number of
irreducible elements, J. Algebra, to appear.
[4] D.F. Anderson and A. Ryckaert, The class group of D+ M, J. Pure Appl. Algebra 52 (1988)
199-212.
[5]1 N. Bourbaki, Eléments de Mathématique, Fasc. XXXI. Algeébre Commutative, Chap. VII:
Diviseurs, Actualités Scientifiques et Industrielles 1314 (Hermann, Paris, 1965).
[6] N. Bourbaki, Commutative Algebra (Addison-Wesley, Reading, MA, 1972).
[7] A. Brandis, Uber die multiplikative struktur von Korpererweiterungen, Math. Z. 87 (1965) 71-73.
[8] J. Brewer and E.A. Rutter, D+ M constructions with general overrings, Michigan Math. J. 23
(1976) 33-42.
[9] L. Carlitz, A characterization of algebraic number fields with class number two, Proc. Amer. Math.
Soc. 11 (1960) 391-392.
[10] S. Chapman and W.W. Smith, On a characterization of algebraic number fields with class number
less than three, J. Algebra 135 (1990) 381-386.
[11] S. Chapman and W.W. Smith, Factorization in Dedekind domains with finite class group, Israel
J. Math. 71 (1990) 65-95.
[12] I.S. Cohen and I. Kaplansky, Rings with a finite number of primes, I, Trans. Amer. Math. Soc.
60 (1946) 468-477.
[13] P.M. Cohn, Bézout rings and their subrings, Math. Proc. Cambridge Philos. Soc. 64 (1968)
251-264.
[14] P.M. Cohn, Unique factorization domains, Amer. Math. Monthly 80 (1973) 1-18.
[15] D. Costa, J. Mott and M. Zafrullah, The construction D+ XDg[X], J. Algebra 53 (1978) 423-439.
[16] D. Costa, J. Mott and M. Zafrullah, Overrings and dimensions of general D+ M constructions, J.
Natur. Sci. Math. 26 (1986) 7-14.
[17] R.M. Fossum, The Divisor Class Group of a Krull Domain (Springer, New York, 1973).
[18] R. Gilmer, Multiplicative Ideal Theory (Dekker, New York, 1972).
[19] R. Gilmer, Commutative Semigroup Rings, Chicago Lectures in Mathematics (Univ. of Chicago
Press, Chicago, IL, 1984.
[20] B. Glastad and J. Mott, Finitely generated groups of divisibilty, Contemp. Math. 8 (1982) 231-247.
[21] A. Grams, Atomic domains and the ascending chain condition for principal ideals, Math. Proc.
Cambridge Philos. Soc. 75 (1974) 321-329.
[22] A. Grams, The distribution of prime ideals of a Dedekind domain, Bull. Austral. Math. Soc. 11
(1974) 429-441.
[23] A. Grams and H. Warner, Irreducible divisors in domains of finite character, Duke Math. J. 42
(1975) 271-284.
[24] W. Heinzer and D. Lantz, Commutative rings with ACC on n-generated ideals, J. Algebra 80 (1983)
261-278.



Factorization in integral domains 19

[25] E.G. Houston, T.G. Lucas and T.M. Viswanathan, Primary decomposition of divisorial ideals in
Mori domains, J. Algebra 117 (1988) 327-342.

[26] 1. Kaplansky, Commutative Rings (Univ. of Chicago Press, Chicago, IL, rev. ed., 1974).

[27] J. Mott and M. Zafrullah, Unruly Hilbert domains, Canad. Math. Bull. 33 (1990) 106-109.

[28] P. Samuel, Anneaux Factoriels (Soc. Mat. Sao Paulo, 1963).

[29] P. Samuel, Lectures on unique factorization domains (notes by Pavaman Murthy), Tata Institute
for Fundamental Research Lectures 30 (Tata Inst. Fund. Res., Bombay, 1964).

[30] P. Samuel, Unique factorization, Amer. Math. Monthly 75 (1968) 945-952.

[31] M. Zafrullah, Rigid elements in GCD-domains, J. Natur. Sci. Math. 17 (1977) 7-14.

[32] M. Zafrullah, Two characterizations of Mori domains, Math. Japon. 33 (1988) 645-652.

[33] A. Zaks, Half-factorial domains, Bull. Amer. Math. Soc. 82 (1976) 721-724.

[34] A. Zaks, Half-factorial domains, Israel J. Math. 37 (1980) 281-302.

[35]1 A. Zaks, Atomic rings without a.c.c. on principal ideals, J. Algebra 74 (1982) 223-231.



