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ABSTRACT

Since the circulation, in 1974, of the first draft of “The construction D+XDS [X],
J. Algebra 53 (1978), 423-439” a number of variations of this construction have ap-
peared. Some of these are: The generalized D+M construction, the A+(X)B[X]
construction, with X a single variable or a set of variables, and the D+ I construc-
tion (with I not necessarily prime). These constructions have proved their worth
not only in providing numerous examples and counter examples in commutative
ring theory, but also in providing statements that often turn out to be forerunners
of results on general pullbacks. The aim of this paper will be to discuss these con-
structions and the remarkable uses they have been put to. I will concentrate more
on the A+XB[X] construction, its basic properties and examples arising from it.

0. Introduction

Let A be a subring of an integral domain B, and let X be an indeterminate
over B. The set {f(X) ∈ B[X] : f(0) ∈ A} is a ring denoted by A + XB[X].
This article is an attempt at a survey of the polynomial ring constructions of the
form A +XB[X] that have come into vogue in recent years. The article consists
of a slightly modified version of the talk that I gave at the Fez Conference held in
the year 2001 and a number of appendices or supplements. In the talk, I briefly
surveyed the history of the A+XB[X] construction and the various constructions
that seem to have risen from similar considerations. The talk is the first part
of the article. In the appendices, I study topics that are either essential to the
understanding of the A+XB[X] construction or are ones that give rise to examples
that, in my opinion, are useful. In the first appendix, which is part 2, I study the
prime ideal structure of A +XB[X] construction. Then in part 3, I indicate how
the study of Spec(A+XB[X]) led to the construction of various examples and in
part 4, I indicate how useful examples can be constructed from the D +XDS [X]
construction. Part 5 is a wish list, i.e., I briefly go over topics that I hoped to write
on but could not because that will make the article a bit too long. The necessary
terminology is explained where needed, and any terminology that has not been
explained can be found either in Gilmer [Gil72] and/or Kaplansky [Kap70].
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1. Part 1 (the Talk)

Let D be an integral domain with quotient field F and let K be a field extension
of F . We know a great deal about D[X] and almost everything about K[X], where
X is an indeterminate over K. About rings between D[X] and K[X] we have just
begun to learn. Let us call the rings between D[X] and K[X] the intermediate
rings. At present we can split these rings into two main types: (1) Intermediate
rings that are composite, i.e. are of the form A+XB[X] = {a0+

Pn
i=1 aiX

i| a0 ∈ A
and ai ∈ B} where D ⊆ A ⊆ B ⊆ K are ring extensions, and (2) The intermediate
rings that are not of the form A+XB[X].

The only, very, well known rings of the latter kind are the rings of integer-valued
polynomials. These rings are very well known and the best I can do is refer the
readers to the wonderful book by Cahen and Chabert [CC 97]. There are other
less well known though equally important examples, of such rings due to Eakin and
Heinzer [EH73]. Indeed rings that are not of the form A+XB[X] have a composite
cover as indicated by D.D. Anderson, D.F. Anderson and myself in [AAZ91]. This
composite cover, very often, determines some of the properties of these rings.
If you have not got the drift yet, then let me tell you, I intend to spend more

time on the composites, i.e., rings of the form A+XB[X]. My reasons for choosing
this course of action are the following:
(a) The composites, over the past few years, have provided directly constructible

examples of rings which were once very hard to construct.
(b) The composites have given rise to new notions and new constructions which

make it easier to bring in new concepts and study them.
(c) The composites are pullbacks and it has become customary to prove a state-

ment for a special kind of a composite, then for a general composite, and then for
a general pullback. Consequently the appreciation of pullbacks has increased.
My plan is essentially to give a brief description of what it (i.e. the A+XB[X]

construction ) is, then beef about what it does, and then indicate several of the
variants of this construction that have appeared recently. Recently, Tom Lucas
[Luc00] has written a survey on examples of pullbacks using the A+XB[X] con-
struction. I will try not to repeat those examples and will cover the material that
Tom left out because of space restrictions.

Basic Properties of the intermediate rings

Given a ring R between D[X] and K[X], we can split R into two parts as follows:
MR = {f(x) ∈ R| f(0) = 0} and SR = {f(X) ∈ R| f(0) 6= 0}. (Let SR(0) =

{f(0) : f ∈ SR.) Of these MR is a prime ideal and SR is a multiplicative set with
the property that SR(0) ∪ {0} = {f(0)| f(x) ∈ R} = R0. Now R0 is a subring
of K, though R0 may or may not be a subring of R, but there are some direct
observations that can be made:
(i) The map π : R −→ R0 defined by π(f) = f(0) is a ring epimorphism with

kerπ =MR. Thus R0 u R/MR.
(ii) Every unit of R is a unit of R0, but the converse may not hold. (Q[X] ⊆

R = Q[X][
√
2X+

√
3] ⊂ R[X], where Q is the rationals and R is the reals. Clearly

R0 = Q[
√
3].)

(iii) If R0 ⊆ R then R = R0 +MR. Using the fact that if B is a ring I an ideal
of B and A a subring of B then A + I is a subring of B, we can construct for
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each subring A of R ∩ R0 a subring A +MR of R. Now as R ⊇ D[X], we have
XA[X] ⊆MR, and so A+MR contains D[X], whenever A contains D.
(iv) If it so happens that R0 ⊆ R and MR = XR1[X] for some R0-subalgebra

R1 of K, then we have R = R0 +XR1[X] a ring of the form A+XB[X]. Indeed,
MR = XR1[X] for some R1 if and only if

Pn
i=1 aiX

i ∈ R implies aiX ∈ R for all i
such that 1 ≤ i ≤ n. In this case, R1 = {a| aX ∈ R} [AAZ91].
(v) Now we have seen that R0 u R/MR. For some of us it is grounds enough

to set up, for each subring R0 of R0, the following diagram of canonical homomor-
phisms:

S = π−1(R0) ,→ R
↓ ↓π
R0 ,→ R/MR

.

In the usual terminology S is called a pullback. Indeed, if R0 ⊆ R, then S =
R0 +MR. Thus the composites A+XB[X] are pullbacks. Yet, while the pullback
would give you π−1(R0) = R, the composites will go a step further. By [AAZ91,
Cor. 2.4] associated with an intermediate ring R, there is a unique composite
S = R0 + XS1[X], where S1 is a subring of K generated by

S
f∈RAf and Af is

the D-submodule of K generated by the coefficients of f. Let us call this unique
composite the composite cover of R.
Now, what is so special about the composite cover of an intermediate ring R?

For one thing, R is integral over D[X] if and only if the composite cover of R is
integral over D[X] ([ AAZ91, Prop. 2.6]). On its own, A + XB[X] is integrally
closed if and only if B is integrally closed and A is integrally closed in B.
(vi) The name composite fits because A + XB[X] is the composite of A and

B[X] over the ideal XB[X]. Mott and Schexnayder’s paper [MS76] gives a good
description of composites of several kinds.

Special types of Composites.

Enough of the basic properties. Let us now see the different types of composites.
The current wave of study of composites started with the circulation of an earlier
version of my paper with Costa and Mott [CMZ78]. The construction to be studied
was given in the title,“The construction D + XDS [X]”, where D is an integral
domain of your choice, S a multiplicative set in D and X an indeterminate. The
immediate special case: the then well known D+XK[X], where K is the quotient
field of D, which I was using to produce examples of GCD domains each proper
principal ideal of which has finitely many minimal primes. I called these GCD
domains the unique representation domains (URD’s). Indeed, if D is a URD,
then so is D + XK[X]. At Paul Cohn’s suggestion I started looking into D(S) =
D+XDS [X]. It turned out that D+XDS [X] is a GCD domain if and only if D is
a GCD domain and for each d ∈ D, GCD(d,X) exists [CMZ78]. It turned out also
that if D(S) is a GCD domain then D(S) is a URD iff D is [Z78]. Of interest in a
GCD domain D are the PF-primes, say the primes P such that DP is a valuation
domain. The PF dimension of a GCD domain can be defined in the same way as
the Krull dimension or the valuative dimension of a domain is defined. Sheldon
[Sh74] had studied the PF primes and had conjectured that a GCD domain D with
PF-dim(D) = Krull-dim(D) should be Bézout (f.g. ideals are principal).
Next, as D(S) is a polynomial ring construction, it was natural to ask ques-

tions about Krull-dim(D(S)) with reference to Krull-dim(D); it meant a study of
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Spec(D(S)). I found out that if P is a prime ideal of D(S) with P ∩ S 6= φ, then
P = P ∩D +XDS [X], and if P ∩ S = φ, then P = PDS [X] ∩D(S).

Adding a little bit here and a little bit there, my paper was complete. When
I was writing my thesis, Paul (Cohn) told me to send whatever I produced to
Robert Gilmer, who was and of course is a leading expert in Multiplicative Ideal
Theory. So, out of habit, I mailed a copy to Robert who had indeed been very
kind to me. This way I got in contact with Joe Mott and Doug Costa who had
done some similar things. Between us, we added results including results such as:
If D is Noetherian, then D(S) is a coherent ring; D + XK[X] is a PVMD if and
only if D is a PVMD. Now this needs a little bit of introduction. A function ∗ on
the set F (D) of nonzero fractional ideals is said to be a star operation if for all
a ∈ K\{0}, A,B ∈ F (D), we have (1) (a)∗ = (a), (aA)∗ = aA∗ (2) A ⊆ A∗ and
A ⊆ B ⇒ A∗ ⊆ B∗ and (3) (A∗)∗ = A∗. If ∗ is a star operation, we can also define
∗-multiplication as A ×∗ B = (AB)∗ = (A∗B)∗ = (A∗B∗)∗. An ideal A ∈ F (D)
is a ∗-ideal if A = A∗. The operation defined, on F (D), by A −→ Av = (A

−1)−1

is called the v-operation, and the one defined by At =
S
Fv, where F ranges over

nonzero finitely generated subideals of A, is called the t-operation. Now D is a
PVMD if for all finitely generated A ∈ F (D), A is t-invertible, i.e., (AA−1)t = D.

The message of [CMZ78], like any other construction involving two rings, was:
see how, and under what conditions, some properties of D get transferred to D(S).
This brought up the question: If D is a PVMD, for what S should D(S) be a
PVMD? That meant knowing all the maximal t-ideals of D(S). An integral ideal
P that is maximal w.r.t. being a t-ideal is a prime ideal, and Griffin [Gri67] had
shown that D is a PVMD if and only if for each maximal t-ideal P of D, DP is
a valuation domain. The main hurdle was that the prime ideals of D(S) that are
disjoint with S are contractions of prime ideals of DS [X]. To see how this problem
could be resolved, I decided to study the D + XDS [X] construction from GCD
domains [Z88]. (A GCD domain is a PVMD.) It did not give me what I wanted,
but it brought simple examples of locally GCD domains that were not GCD, and
the fact that if P is a prime t-ideal of D then PDP may not be a t-ideal of DP . I
also discovered that if D is GCD, then D(S) is GCD if and only if S is a splitting
set, i.e., each d ∈ D\{0} is expressible as d = sd1, where s ∈ S and (d1)∩(t) = (td1)
for all t ∈ S. This rediscovery of the splitting sets of [MS76] led not only to a lot
of activity from the factorization point of view, but also to the ultimate solution
of my problem. The solution turned out to be: If D is a PVMD, D(S) is a PVMD
if and only if S is a t-splitting set of D. Now, a saturated multiplicative set is a
t-splitting set if for every element d ∈ D\{0} we have (d) = (AB)t, where A and B
are integral t-ideals such that A∩ S 6= φ and B ∩ (t) = Bt for all t ∈ S. This result
has appeared in a paper of mine with the Anderson brothers [AAZ01].

Apparently the contents of [CMZ78] had started taking effect before it was pub-
lished. Brewer and Rutter[BR76] came up with the idea: if R = k +M, where k
is a field, then for every subring D of k you have a subring D +M of R. They
called it the generalized D +M construction, generalized because it generalized
the celebrated D+M construction, greatly popularized by Gilmer, which required
R = k +M to be a valuation domain. Using this construction they were able to
recover all that was proved about D +XK[X] in [CMZ78], here K = qf(D) and,
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on top of that, their construction allowed results on subrings of k[[X]], where k
is a field. While this was happening, Malik and Mott [MM83] had come up with
their study of strong S-domains. D is a S(eidenberg) domain if for each height
one prime P of D, PD[X] is of height one, and D is strong S if for each prime P,
D/P is an S-domain. They showed that the D +XK[X] construction is a strong
S-ring if and only if D is; yet they pointed out that if D[X] is strong S, it is not
necessary that (D +M)[X] should be strong S. Now, [BR76] had encouraged me
to go general. I wrote up a piece on the overrings of D + XL[X], where L is an
extension of the quotient field of D. Then Costa and Mott gave it the language of
generalized D +M, and we had another paper [CMZ 86]. (Later Joe and I [MZ
90] showed that if D is a Noetherian Hilbert domain and L is an extension of the
quotient field of D, then D + XL[X] is a non-Noetherian Hilbert domain whose
maximal ideals are finitely generated. Constructing such a domain by conventional
means was quite difficult, as shown by Gilmer and Heinzer [GH76].)

The beauty of the D + XDS [X] construction seems to lie in the fact that it
is so close to well known examples of pullbacks and composites, yet so open to
reinterpretation and so easy to work with. Marco Fontana wrote a longish article
in Italian [F79] and sent a copy to me in Libya. (Marco tells me that those were
his seminar notes.) He had treated all the constructions and composites that I
have talked about above with reference to [MS76], including D(S), showing how
the spectral space of a pullback can be shown to be connected with the spectral
spaces of the constituents of the pullback. I think that Marco’s interest in the
D+XDS [X] construction had a profound effect on the development of polynomial
ring constructions.

In trying to get some examples in a completely different context, I had found
out that if k ⊆ K is an extension of fields and if X is an indeterminate over K,
then k +XK[X] satisfies ACC on principal ideals [C89]. When, in 1986, I went to
Lyon, (France) I gave, among other talks, a talk on an earlier version of [AAZ91].
There I met several young men, Salah-Eddine Kabbaj included, who were eager
to learn and ready to experiment with new ideas and techniques. From these
young men issued forth a barrage of papers containing all sorts of variations of A+
XB[X] construction. Strong S-domains and Jaffard domains were in vogue. Jaffard
domains are domains D such that valuative dim(D) = Krull dim(D) (symbolically
(dimv(D) = K-dim(D)) . Anderson, Bouvier, Dobbs, Fontana and Kabbaj wrote
papers, [ABDFK88] and [BK88]. [ABDFK88], using various pullbacks to construct
examples, and [BK88] showing that if D is Jaffard, then so is D +XDS [X]. Then
Fontana and Kabbaj [FK90] studied the Krull and valuative dimensions of D +
(X1,X2,.., Xn)DS [X1,X2,.., Xn] = D(S,n). It turned out that dimv(D

(S,n)) =
dimv(D)+n, and that D is a Jaffard domain if and only if so is D(S,n). Next, they
prove that D(S,n) is a strong S ring if and only if both D and DS [X1,X2,.., Xn] are.
To top it all, they showed that D[X] is an S-domain for any D. Later, Fontana,
Izelgue, and Kabbaj [FIK92] studied the Krull and valuative dimensions of the
A+XB[X] construction and showed that the results are different, especially when
the quotient field of B is a proper extension of the quotient field of A. Recently,
Anderson and Nour-el-Abidine [AN01] have studied theA+XB[X] andA+XB[[X]]
constructions from GCD domains.
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Current trends

The sole purpose of studying the D+XDS [X] construction was to get examples
of domains that did not satisfy ACC on principal ideals. But we could not ignore the
possibility of ACCP holding for an intermediate ring. In [AAZ91], we came up with:
Let R be an intermediate ring, then R has ACCP if and only if any ascending chain
of principal ideals generated by polynomials of R, of the same degree, terminates.
As a demonstration of this, we proved a proposition for D[X] ⊆ R ⊆ K[X], where
K is the quotient field of D. Of course we thrashed the case of A+XB[X] for A and
B fields, but Barucci, Izelgue, and Kabbaj [BIK95] came up with the somewhat
remarkable discovery that if A is a field then A+XB[X] has ACCP no matter what
kind of integral domain B is. (I recall having written a good review of this paper
but, apparently, what I sent was hard to understand, for reasons I am trying to
explain to myself. Possibly some part of the review got deleted!) This remarkable
short note had some other gems that started off a lot of activity in the study of
factorization properties of A+XB[X] and A+XB[[X]] constructions. The names
to mention in this connection are Nathalie Gonzalez [Go99] and [Gon99] [GPR01] ,
David Anderson and Nour-el-Abidine [AN99], Dumitrescu, Radu, Salihi and Shah
[DSRS00].

Let T (D) denote the set of t-invertible t-ideals of D. Then T (D) is a group under
t-product and when we quotient it by its subgroup P (D) of principal fractional
ideals we get what I call the t-class group Clt(D) = T (D)/P (D). This class group
was introduced by Bouvier in [B82]. Anderson and Ryckaert [AR88] studied the t-
class group of the generalizedD+M construction. The fact that Clt(D+XK[X]) u
Clt(D) came to the fore in a strange way in a paper of mine with Bouvier [BZ88].
Then as the Fontana factor grew, a lot of the above questions were considered
for pullbacks. Fontana and Gabelli’s [FG96], and independently of them Khalis
and Nour El-Abidine [KN97], considered the t-class group of a pullback. Yet the
class group of A + XB[X] has also been studied by Anderson, El-Baghdadi and
Kabbaj [ABK99]. In [ABK99] the main question studied is: Under what conditions
is Clt(A+XB[X]) u Clt(A). The same authors go on to study other forms of the
t-class group of A +XB[X]; a good source for their work is El-Baghdadi’s thesis
[B01]. Coming back to the pullbacks, the hot questions these days are something
like: when is a pullback...? For example, see Houston, Kabbaj, Lucas, and Mimouni,
[HKLM94]. Also, see coherent-like conditions in pullbacks as in [GH97].

2. Part 2 (Krull dimension of A+XB[X])

Being honest to goodness polynomial ring constructions, A + XB[X] domains
qualify for a comparative study of their Krull dimensions with the Krull dimensions
of A,A[X] and B[X]. Of course, so do the general pullbacks, but in the case of the
A + XB[X] construction, we can get a somewhat better picture. This picture
becomes clearer for some special cases of this construction. Now Fontana, Izelgue,
and Kabbaj [FIK], [FIK92] (one of these two is a translation of the other) and
[FIK94] took good care of this need both for speakers of English and French. In
the following, I will try to give an idea of what they produced in this connection
for readers who are interested, but not too interested.
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Let us start with the observation that for each prime ideal P of R = A+XB[X],
either X ∈ P or X /∈ P. Clearly if X ∈ P, then XR ⊆ P, and so X2B[X] ⊆
XR ⊆ P . But as X2B[X] = (XB[X])2, we have XB[X] ⊆ P. This means that
all the prime ideals that contain X are of the form p + XB[X], where p is a
prime ideal of A. Now the prime ideals Q that do not contain X are hidden in
places that may be hard to reach. Let us fix some notation to make the task a
little lighter. Let L ={P ∈ Spec(R) : X ∈ P} and M ={P ∈ Spec(R) : X /∈
P}. Then L ={p + XB[X] : p ∈ Spec(A)}. Now let l = sup{htR(P ) : P ∈
L} = sup{htR(p + XB[X] : p ∈ Spec(A)} = sup{htA(P ) + htR(XB[X] : P ∈
L) = dim(A) + htR(XB[X]). Next, let m be the supremum of lengths of chains
in M. Then, if S = {Xn : where n ∈ N}, there is a one-to-one order-preserving
correspondence between the primes inM and the primes in RS = (A+XB[X])S =
B[X]S = B[X,X−1]; so m = dim(B[X,X−1]). Now it has been established that
dim(B[X,X−1] = dim(B[X]), see for instance [ABDFK88, Proposition 1.14]. Thus
m = dim(B[X]). Since both these sets of primes come from Spec(R), we have
dim(R) ≥ max{l,m} = max{dim(A) + htR(XB[X]), dim(B[X])}. Let us record
this for future reference as an observation.
Observation 2.0. Let R = A+XB[X], where A ⊆ B is an extension of domains

and X is an indeterminate over B. Then dim(R) ≥ max{dim(A) + htR(XB[X]),
dim(B[X])}.
Now we must find out the answers to the obvious questions. That is, what is

htR(XB[X])?, is there an upper bound for dim(R)?, etc. Besides, even though the
sets L andM are disjoint, some members ofM may be contained in some members
of L. Since the Krull dimension is nothing but the supremum of lengths of chains of
prime ideals, we may have to consider the case when, after taking the longest chain
in L, we are faced with the possibility that there is a sizeable chain of prime ideals
of R contained in XB[X], and obviously each of those prime ideals is coming from
M. So let us find out what kind of prime ideals of R will be contained in XB[X].

Lemma 2.1. Let R = A+XB[X], where A ⊆ B is an extension of domains and
X is an indeterminate over B. If P is a prime ideal of R such that P $ XB[X],
then the following hold.
(1) no power of X is contained in P .
(2)X−1P∩A = (0). (Consequently, if there is a nonzero prime ideal P $ XB[X],

then X−1P ∩A = (0)).
(3) X−1P does not contain a polynomial f(X) such that f(0) ∈ A\{0}.
(4) X−1P is a prime ideal of B[X].
Proof. (1) Since P is a prime, any power ofX in P meansX ∈ P. But thenXR ⊆

P, which means that X2B[X] ⊆ P. But as we have already observed, X2B[X] =
(XB[X])2 we have XB[X] ⊆ P, and a contradiction. (2) Clearly X−1P is an ideal
of B[X]. Suppose on the contrary that X−1P ∩A = α 6= (0). Then X−1P ⊇ α[X].
Select f(X) ∈ α[X] such that f(0) 6= 0. Now f(X) ∈ A[X] ⊆ A + XB[X],X ∈
A+XB[X], f(X) /∈ P because f(X) /∈ XB[X] and X /∈ P by (1). Yet Xf(X) ∈ P,
because Xα[X] ⊆ P, contradicting the primality of P. (3) The proof of (2) can be
modified to take care of this. (4) Let f(X)g(X) ∈ X−1P where f, g ∈ B[X]. Then
Xf(X)g(X) ∈ P, and hence X2f(X)g(X) = Xf(X)(Xg(X)) ∈ P, which forces
Xf(X) ∈ P or Xg(X) ∈ P. That is, f(X) ∈ X−1P or g(X) ∈ X−1P .
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Lemma 2.2. Given that A,B, X and R are as in Lemma 2.1. If p is a prime
ideal of B such that p ∩ A = (0) then Xp[X] is a prime ideal of R contained in
XB[X].
Proof. It is enough to note that p[X]∩ (A+XB[X]) = {f(X) ∈ p[X] : f(0) = 0

and every coefficient of f comes from {Xg(X) : g(X) ∈ p[X]} Xp[X]. That Xp[X]
is a prime ideal of R follows from the fact that it is a contraction of a prime ideal.
Lemma 2.3. Let A ⊆ B be an extension of domains, let X be an indeterminate

over B, and let R = A+XB[X]. Next let P be an ideal of B that is maximal w.r.t.
the property that P ∩ A = (0). Then P is a prime ideal such that for any prime
ideal Q strictly containing P [X], either X ∈ Q or there is a polynomial f ∈ Q such
that f(0) ∈ A. Consequently, if P has the above stated property, there is no prime
ideal strictly between XB[X] and P [X] ∩R = XP [X].
Proof. Note that A\{0} is a multiplicatively closed set inB. So, P being maximal

w.r.t. P ∩A = (0) means P is maximal w.r.t. being disjoint from A\(0). This makes
P a prime ideal. Next, suppose that Q is a prime ideal such that P [X] $ Q and
X /∈ Q. Then there is a polynomial f(X) ∈ Q\P [X] such that no coefficient of f
is in P. Since X /∈ Q, we can arrange f(X) so that f(0) 6= 0. But then, due to the
maximality of P w.r.t. disjointness from A\(0), we have rf(0) + p ∈ A for some
r ∈ B and p ∈ P. Next note that as P ∩ A = (0), we have P [X] ∩ R = XP [X] ⊆
XB[X]. Now if there were a prime ideal H strictly between XB[X] and XP [X],
then by (1) of Lemma 2.1, Xn /∈ H for any n. Yet, as H ⊆ XB[X], every element
of H is of the form h = Xg(X) where g(X) ∈ B[X]. Let h = Xg(X) ∈ H\XP [X].
Then g(X) ∈ X−1H\P [X]. This means that X−1H % P [X] and as X /∈ X−1H by
the first part there is f(X) ∈ X−1H such that f(0) ∈ A\{0}. But this contradicts
(3) of Lemma 2.1. Hence there is no prime ideal H strictly between XB[X] and
P [X] ∩R = XP [X].

Before we go any further, a word about dim(B[X]). Let C : Pn ! Pn−1 ! ... !
P1 ! (0) be a chain of prime ideals in B[X]. Jaffard [J60] calls C a special chain
if Pi ∈ C implies (Pi ∩ B)[X] ∈ C. In [J60], it was shown that dim(B[X]) can
be realized as the length of a special chain. Let B be finite dimensional and let
C described above be a chain that realizes dim(B[X]). Then Pn ! (Pn ∩ B)[X].
For if Pn = (Pn ∩B)[X], then Pn+1 = (Pn,X) = (Pn ∩B) +XB[X], and so there
is a longer (special) chain of prime ideals in B[X], a contradiction. Next we note
that (Pn ∩B)[X] = Pn−1. For if not then, say (Pn ∩B)[X] = Pn−i because C is a
special chain, which gives Pn ∩ B ⊇ Pn−1 ∩ B ⊇ Pn−i ∩ B = Pn ∩ B. This forces
three distinct prime ideals of B[X] to contract to the same prime ideal of B, which
is impossible. Finally we note that Pn ∩B must be a maximal ideal of B, because
if not, then say a prime ideal Q ! (Pn ∩B), and then Q[X] ! (Pn ∩B)[X] = Pn−1
and we end up, again, with a longer chain Q+XB[X] ! Q[X] ! Pn−1.... (A reader
who is seriously interested in dimension theory of polynomial rings may want to
read [Gil72, p.366] and chase the references given there.) Now, having made these
notes, we can make the following statement.
Observation 2.4. For an integral domainB, dim(B[X]) = 1+max{htB[X](P [X]) :

P ∈ Spec(B)} = 1 +max{htB[X](P [X]) : P ranges over maximal ideals of B}.
Lemma 2.5. Let R = A + XB[X], where A is a field. Then dim(R) =

dim(B[X]) and so dim(R) = 1 if and only if B is a field.
Proof. In this case, L ={XB[X]} and so l = 1 andM = {P ∈ Spec(R) : X /∈

P}, and as before m = dim(B[X]) = 1+max{htB[X}(P [X]) : P ∈ Spec(B)}. Now
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for each P ∈ Spec(B), P ∩ A = (0), and so XB[X] properly contains XP [X] for
each P ∈ Spec(B). Thus htR(XB[X]) ≥ 1+max{htB[X}(P [X]) : P ∈ Spec(B)} =
dim(B[X]). On the other hand, each prime ideal properly contained in XB[X]
corresponds to a prime ideal properly contained in some member of Spec(B[X]) by
Lemma 2.3. Thus htR(XB[X]) ≤ dim(B[X]).
Now we are in a position to find out the height of XB[X] in R.

Lemma 2.6. Let A,B,X, and R be as in Lemma 2.1 and let S = A∗ = A\{0}.
Then htR(XB[X]) = 1 +max{htB(p[X]) : p ∈ Spec(B) such that p ∩ A = 0} =
dim(BS [X]) ≤ dim(B[X]).
Proof. Indeed, if for every nonzero prime ideal p of B we have p ∩ A 6= (0),

then qf(A) = qf(B), and so htR(XB[X]) ≤ dim(A+XB[X])S = dim(K[X]) = 1
because XB[X]∩A = 0. Now as htR(XB[X]) ≥ 1, we have htR(XB[X]) = 1. This
establishes the lemma for the case when {p ∈ Spec(B)\{(0)} : p∩A = 0} = φ. Now
suppose that {p ∈ Spec(B)\{(0)} : p∩A = 0} 6= φ. Then, as XB[X]∩A = (0), we
have htR(XB[X]) = htRA∗ (XBS [X]) = dim(BS [X]) because RS = AS +XBS [X]
meets the requirements of Lemma 2.5. The inequality is self evident.
Now let us take a chain of prime ideals C = Pn ! Pn−1 ! ... ! Pr ! Pr−1 !

... ! P1 ! P0 = (0) in A+XB[X], and let us use our trick of spotting X. If X does
not belong to any of the Pi, then all the Pi are inM, and so n ≤ m = dim(B[X]).
If X belongs to some, but not all of the Pi, then we reason as follows. If X ∈ Pr,
then Pi = (Pi ∩ A) + XB[X] for all i such that r ≤ i ≤ n. Now if Pr = XB[X],
the largest value that n − r can take corresponds to the longest chain of prime
ideals in A. So n− r ≤ dim(A). That is, n ≤ dim(A) + r. But, by Lemma 2.6, r ≤
dim(B[X]). So we have dim(R) ≤ dimA + dim(B[X]. Next, according to Lemma
2.6, htR(XB[X]) = dim(BS [X]). Combining this information with Observations 0,
we have that dim(R) ≥ max{dim(A) + dim(BS [X]), dim(B[X])} This completes
the proof of the following theorem.

Theorem 2.7. Let A ⊆ B be an extension of domains, X an indeterminate
over B and let R = A+XB[X]. Then max{dim(A)+ dim(BS [X]), dim(B[X])} ≤
dim(R) ≤ dimA+ dim(B[X]).
Now the usual questions. Can these bounds be attained? How do these ob-

servations link up with earlier work? First of all, note that if dim(BS [X]) =
dim(B[X]), then the inequalities are replaced by equalities, that is dim(R) =
dimA + dim(B[X]). What are the circumstances under which this can happen?
Of course one possibility is when qf(A) ⊆ B. That is, if B is a field or B is a
qf(A)-algebra. It would be interesting to know if there is an example of a domain
B, where qf(A) * B, and still dim(R) = dimA + dim(B[X]). It may be noted
however that qf(A) ⊆ B if and only if for each P ∈ Spec(B), P ∩ A = (0). Now
for the one-ended (lower) limits. Let A be a one-dimensional domain such that
dim(A[X]) = 3. Then R = A + XA[X] gets the lower limit and understandably
misses the upper limit. All we need now is an example of R = A+XB[X] such that
max{dim(A) + dim(BS [X]), dim(B[X])} < dim(R) < dimA + dim(B[X]). Such
an example was constructed in [FIK92, Example 3.1]. I will mention the example
below and what it does, and let an interested reader look for proofs in [FIK92].

Example 2.8. Let K be a field, and let X,X1,X2,X3,X4 be indeterminates
over K. Set A = K[X1](X1) + X4K(X1,X2, X3)[X4](X4), B = K(X1)[X2](X2) +
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X3K(X1,X2)[X3](X3) +X4K(X1,X2, X3)[X4](X4), R = A+XB[X], and S = A
∗.

Then max{dim(A) + dim(BS [X]), dim(B[X])} < dim(R) < dimA + dim(B[X]).
In the illustration of this example, it is also shown that in this case dim(R) >
dim(A[X]). This is important to know because in [CMZ78, Theorem 2.6] it was
shown that if S is a multiplicative set in A such that B = AS and R = A+XAS [X],
then dim(AS [X]) ≤ dim(R) ≤ dim(A[X]). So, this example also serves to show
that there was a need for the study of Krull dimension of A + XB[X], and that
the general A+XB[X] construction can behave differently from the A+XAS [X]
construction.

I do not know if it has occurred to anyone, but I feel that the inequalities ap-
pearing in Theorem 2.7 can be used as a forcing tool, to draw conclusions about
A + XB[X] constructions having a certain properties. However, the construc-
tion being too general, the forcing that I suggest may have very limited scope.
For instance, Theorem 2.7 provides the following estimates for A + XAS [X] :
max{dim(A) + 1, dim(AS [X])} ≤ dim(R) ≤ dimA + dim(AS [X]), and the up-
per bound may turn out to be somewhat higher than the corresponding inequali-
ties given in [CMZ78,Corollary 2.9] which says max{dim(A) + 1, dim(AS [X])} ≤
dim(R)≤ S−dimA+dim(AS [X]). Here S−dim(A) represents the maximum length
of the chain of prime ideals Pn ! Pn−1 ! ..... ! P1 = P such that Pi ∩ S 6= φ.

I must record here the fact that a study of the Krull dimension, nearly on the
same lines as [FIK92], has been carried out by Cahen [Ca90] and Ayache[Ay] for
the A+ I construction. Indeed, the first application of their work is A +XB[X],
though it is more useful in the situation when A+ I is a subring of K[X1, ..,Xn].
(Rings of this kind were studied by Visweswaran [Vis88].) Moreover, the general
study of subrings of the form D+I of a domain R has been carried out in [FIK95].
The study of Krull dimension or of chains of prime ideals has also gone on in some
other directions in Dobbs and Khalis’s joint work[DK01]. In this paper, they also
have a construction of the form A+XAS [[X]].

3. Part 3 (Constructing interesting examples 1)

It is good to have a proof that something exists, but if there is a simple example
to support a claim, we would do well to use it. An example at hand may well pave
the way to better understanding. After this “philosophical” statement, I should
come up with some really interesting constructions. I hope to do just that, but I
have to let some excess material from the previous part flow in.

Let us talk a little about the valuative dimension of R = A + XB[X]. Recall
that if A is an integral domain, then the supremum of dim(V ) for all valuation
overrings V of A is called the valuative dimension of A and is denoted by dimv(A).
The notion of the valuative dimension was introduced by Jaffard in [J58]. However,
Gilmer [Gil72] has given a good basic treatment to this topic, and the following
remarks can be traced back to [Gil72, Section 30]. Indeed, for an integral domain
A, dim(A) ≤ dimv(A). Now what is so important about the valuative dimension is
the result that dimv(A[X]) = dimv(A) + 1. Following [ABDFK88], we may call an
integral domain A a Jaffard domain if dimv(A) = dim(A). Pulling out two of the
several equivalent conditions of Theorem 30.9 of [Gil72], we have that dimv(A) = n
is the same as dim(A[X1,X2, ..,Xn]) = 2n. So, Noetherian domains and Prüfer
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domains are Jaffard domains, along with a host of other examples of Jaffard domains
mentioned in [ABDFK88]. Coming back to the business at hand, we have the
following result, in connection with the A + XB[X] construction, to report from
[FIK92]. Here, let us recall that if A ⊆ B is an extension of domains, then the
degree of transcendence of qf(B) over qf(A) is called the degree of transcendence
of B over A, denoted by tr.deg(B/A).

Theorem 3.1. dimv(A+XB[X]) = dimv(A) + tr.deg(B/A) + 1.

Now if you are interested in the proof, look up [FIK92]. However, I would be
more interested in a proof that is based on the observation that every valuation
overring of R = A+XB[X] is the ring of a valuation on qf(R) that is an extension
of a valuation on qf(A).
Now let us see what Theorem 3.1 has to offer. Indeed, if B is algebraic over A,

then tr.deg(B/A) = 0. So, if B is algebraic over A, in particular if B is an overring
of A, then dimv(A+XB[X]) = dimv(A)+ 1. This obviously takes care of the case
when B is a quotient ring of A. Now what is the use?

Corollary 3.2. Suppose that A is a Jaffard domain. Then dimv(A+XB[X]) =
dim(A) + tr.deg(B/A) + 1.
Thus if tr.deg(L/K) =∞, where L is a field extension ofK, then R = K+XL[X]

is a one-dimensional domain whose valuative dimension is infinite. There is a wealth
of results on valuative dimensions of pullbacks and generalized D+M constructions
in [ABDFK88]. One may wonder about the need to write [FIK92] if pullbacks are
so perfect. My response, as usual, is that A+XB[X] constructions, crude though
they may look, do provide valuable information which may be hard to glean from
pullbacks.

Recall that an integral domain A is an S-domain (S for Seidenberg) if for each
height-one prime ideal P of A we have that P [X] is a height-one prime ideal of
A[X]. Let us also recall from Kaplansky [Kap70], who is responsible for this ter-
minology, that A is a strong S-ring if A/P is an S-domain for each prime ideal P
of A. Clearly if A is a strong S-ring, then so are the homomorphic images of A.
The terminology, whose motivation can in part be traced back to Seidenberg [S53,
Theorem 3], seemed to provide a useful tool for recognizing integral domains that
behaved like Noetherian domains in that they satisfied dim(A[X]) = dim(A) + 1.

Theorem 3.3. ( [Kap70, Theorem 39]). Let A be a strong S-ring, let X be
an indeterminate over A, and let P be a prime ideal of A. Then htA[X](P [X]) =
htA(P ).Moreover, if Q is a prime ideal of A[X] such that Q∩A = P and Q ) P [X],
then htA[X](Q) = htA(P ) + 1.

Then in a later section, he shows that a valuation ring is a strong S-ring [Kap70,
Theorem 68]. Now this is where Malik and Mott [MM83] picked up the strand and
started pulling, of course in a multiplicative sort of way. Their results were of the
type:

Proposition 3.4. ([MM83, 2.1 and 2.2]) A domain A is an S-domain if and
only if AT is an S-domain for each multiplicative set T, if and only if AM is an
S-domain for each maximal ideal M.
On the strong S-property, they proved, likewise, the following statement.
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Proposition 3.5. (MM83, 2.3,2.4]). A ring A is a strong S-ring if and only if
AT is a strong S-ring for each multiplicative set T, if and only if AM is a strong
S-ring for each maximal ideal M .
Now, coupling Proposition 3.5 with Kaplansky’s Theorem 68 mentioned above,

and adding some more work they stated the following result.
Proposition 3.6 ([MM83, 2.5]). A Prüfer domain is a strong S-domain.
Using their criteria, they came up with the following scheme.
Proposition 3.7. ([MM83, 3.1, 3.2]) For A an S-domain (a strong S-domain),

A[X] is an S-domain (resp., a strong S-domain) if and only if AP [X] is an S-domain
(resp., a strong S-domain) for each prime ideal P of R. (Here X denotes a finite
set of indeterminates.)
There were several other interesting statements in section 3 of [MM83]. All this

culminated in a beautiful result and that can be stated as follows.
Theorem 3.8. ([MM83,3.5]) LetA be a Prüfer domain and letX = {X1,X2, ..,Xn}

be a finite set of indeterminates over A. Then A[X] is a strong S-domain.
Next, using Kaplansky’s Theorem 39 (Theorem 3.3 here) it is easy to observe

that a strong S-domain is a Jaffard domain. This observation was made in [MM83],
along with an example of a Jaffard domain that is not a strong S-ring [MM83, 3.11].
It appears that no one has tried to find a minimal set of conditions under which
a Jaffard domain should be a strong S-domain. The paper ([MM83]) goes on to
display other goodies, but I must leave the rest for the interested readers and
hasten to answer the question that has by now started popping up in every reader’s
mind,“Where is the A+XB[X]?” Let me take you to Salah Kabbaj’s earlier work.
He picked up where [MM83] had left off. I found in an earlier version of his thesis
the following statement which stayed as it was in the final version ([Kab, Théorème
0.8, Chap. II]). Let A be an S-domain. Then A[X1,X2, ..,Xn] is an S-domain
for all n ≥ 1. Looked like a pretty result, it was a considerable improvement on
[MM83, 3.1] (which is a part of Proposition 3.7 here), so I started playing with it.
The first thing that came to my mind was,“Where is he using the fact that A is an
S-domain?” The answer came out, “Only at one place, and that could be avoided.”
I made the suggestion, in my report on his thesis, indicating how his proof can be
modified to prove the following statement.
Theorem 3.9. If A is an integral domain and X an indeterminate over A, then

A[X] is an S-domain.
Now, for some reason, this suggestion was not taken and I was hopping mad, (I

so wanted Kabbaj to have this result!). I was working on [AAZ91] and I mentioned
the result to Dan. He agreed to include the result, but at a price, as usual, he would
write his own proof. He did give a pretty proof though. Possibly simultaneously,
Kabbaj and Fontana [KF90] did prove Theorem 3.9 and many more interesting
results. Now my trouble is that I like both very much. For this reason, I have
decided to give a proof that has the flavor of both.

Lemma 3.10. ([AAZ91]) For an integral domain A the following statements
are equivalent.
(1) A is an S-domain.
(2) For each height-one prime ideal P of A, AP is an S-domain.
(3) For each height-one prime ideal P of A, AP (the integral closure of AP ) is a

Prüfer domain.
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Proof. (1)⇒ (2) by Proposition 3.4 above. (2)⇒ (3) By (2), AP [X] is two-
dimensional and by [Gil, 30.14], AP is Prüfer. (3)⇒ (1). Suppose that for each

height-one prime ideal P, AP is one-dimensional Prüfer. Then AP [X] = AP [X] is
two-dimensional, which requires that AP [X] is two dimensional, which means that
PAP [X] = P (A[X])(A\P ) is of height one. This indeed means that PA[X] = P [X]
is of height one. Now recall that P is any height-one prime ideal of A.

This lemma provides a neat characterization of S-domains. Now before we start
proving the theorem, let me digress a little. Call A a stably strong S-domain if
A[X1, ..,Xn] is a strong S-domain for all n ≥ 1. (A being a homomorphic image
of A[X1, ..,Xn], stably strong S implies strong S.) So, a Prüfer domain, by The-
orem 3.8 above, is a (stably) strong S-domain. Of the various equivalences on
one-dimensional domains in [ABDFK88, Theorem 1.10], we recall that for a one-
dimensional domain A the properties: (a) S-domain, (b) strong S-domain, and (c)
stably strong S-domain, are all equivalent.
Proof of Theorem 3.9. By Lemma 3.10, all we need is to show that A[X]P is

an S-domain for each height-one prime P of A[X]. There are two possibilities: (i)
P ∩A = (0), (ii) P ∩A = p 6= (0). In the first case, it is well known that (A[X])P is
a valuation domain and hence an S-domain. In the second case, P = p[X], where
p is of height one. Now PA[X]P = pA[X]p[X] is of height one. But A[X]p[X] =
Ap(X) = (Ap[X])pAp[X]. So pAp[X] is of height one. Whence the one dimensional
Ap is an S-domain. But then, by the remarks prior to the proof, Ap is a stably strong
S-domain. This means that Ap[X] is an S-domain. But then so is every quotient
ring of Ap[X] by Proposition 3.4 above. Whence Ap(X) = A[X]p[X] = A[X]P is an
S-domain, and this completes the proof.
An immediate corollary is the following statement.
Corollary 3.11. ([AAZ91, 3.3]) D +XDS [X] is an S-domain for every multi-

plicative set S of D.
As already mentioned in part 1, in [FK90] the authors study a construction

defined as

D(S,r) = D + (X1, ..,Xr)DS [X1, ..,Xr]

and show that D(S,r) is an S-domain. Now the question is, what form Theorem
3.9 will take for R = A+XB[X]? The answer comes from [FIK94]. Yet before we
quote from [FIK94], let us see what we can do with what we have established so
far. The following statement can be regarded as a corollary to Lemma 3.10 and
Theorem 3.9.

Proposition 3.12. Let A ⊆ B be an extension of domains such that B is a
subring of the quotient field of A. Then R = A+XB[X] is an S-domain.
Proof. We show that RP is an S-domain for each height-one prime P of R. Note

that htR(XB[X]) = 1 and that RXB[X] = (A+XB[X])XB[X] = (K[X])XK[X] is a
valuation domain, and hence is an S-domain. For height-one primes P 6= XB[X],
let S = {Xn : n ≥ 1} and note that RP = (RS)PS = B[X,X−1]PS . But then RP
is a quotient ring of B[X] which is an S-domain, and we know that every quotient
ring of an S-domain is again an S-domain (Proposition 3.4).
Now comes the promised result.

Proposition 3.13. ([FIK94, Theorem 1.1]) R = A+XB[X] is an S-domain if
and only if htR(XB[X]) > 1 or B is algebraic over A.
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What is the use of this? For one thing, it takes care of Corollary 3.11 and
Proposition 3.12. Moreover, you can construct composite examples of S-domains
and non S-domains with interesting properties. For instance, using Proposition
3.13, if Z, Q and R represent the integers, rationals, and reals, respectively then
Z+XR[X] is not an S-domain, while Z + XQ(i)[X] is an S-domain. Of course,
these are just two very simple examples.
In [FIK94], the reader can find a wealth of examples on strong S-domains. For

this survey, we select a number of results that could intrigue the reader enough
to want to prove some direct results in this direction. Let us recall first that the
extension of domains A ⊆ B is said to be incomparable (INC) if two distinct primes
P,Q of B contract to the same prime p of A, then P and Q are incomparable.
([Kap70, Section1-6] is a good source for a study of INC and related notions.) For
example, A ⊆ A[X], where X is an indeterminate, does not have INC because (0)
⊆ (X) both contract to (0) in A. So if A ⊆ B is incomparable, then every nonzero
prime of B contracts to a nonzero prime of A. Next, A ⊆ B is said to be residually
algebraic if for each prime P of B, we have B/P algebraic over A/(P ∩A). For this
notion the reader may look up [DF84].

Theorem 3.14. ([FIK94, Théorème 1.7]) LetA ⊆ B be an extension of domains.
Then the following are equivalent:
(1) R = A + XB[X] is a strong S-domain and A ⊆ B is an incomparable

extension.
(2) A and B[X] are strong S-domains and A ⊆ B is a residually algebraic

extension.
As a direct consequence of the above equivalence, we have the following state-

ment.

Corollary 3.15. Let D be an integral domain, S a multiplicative set of D and
let K be a field containing D as a subring. Then the following hold.
(1) D+XK[X] is a strong S-domain if and only if D is strong S-domain and K

is algebraic over the quotient field of D.
(2) D + XDS [X] is a strong S-domain if and only if D and DS [X] are strong

S-domains.

Now this little corollary gives us a host of examples of strong S-domains, includ-
ing ones that have terrible and totally unaccommodating properties elsewhere and
ones that serve as examples of beautiful new notions. I would mention only two
here.

Example 3.16. Let D be a Prüfer domain and let S be a multiplicative set of
D. Then D(S) = D +XDS [X] is a strong S-domain.
In fact, D(S) is a stably strong S-domain, i.e., for any set {Y1, Y2, .., Ym} of

indeterminates D(S)[Y1, Y2, .., Ym] is a strong S-domain. The main reason is that,
by Theorem 3.8, D[X] and DS [X] are both strong S-domains for any set X of
indeterminates and DS [X] = (D[X])S .

Now D(S) is Prüfer if and only if S = D∗ [CMZ78], so Example 3.16 affords
an example of a non Prüfer domain that is a strong S-domain. For reasons of
organization, I will not go too deep into this example and will refer to it later.
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Example 3.17. Let K ⊆ L be an extension of fields. Then R = K +XL[X] is
one-dimensional and according to [ABDFK88], R is an S-domain ⇔ R is a strong
S-domain ⇔ R the integral closure is a Prüfer domain ⇔ R is a stably strong
S-domain. Now R is Prüfer if and only if L is algebraic over K. Next, let K be
of characteristic p 6= 0 and let L be a purely inseparable extension of K such that
Lp ⊆ K. (See [Kap, Theorem 100] for an example with p = 2.) Then, apart from
being a stably strong S-domain, R = K +XL[X] has the added property that for
each pair f, g ∈ R we have fp, gp ∈ K[X], which is a PID, and so (fp, gp)K[X] =
hK[X]. Now as K[X]R = R, we have (fp, gp)R = hR. From this it also follows
that fpR ∩ gpR is principal.

This example is Example 2.13 of [Z85]. Let me use this example to introduce an
interesting set of concepts.
An integral domain D is called an almost GCD domain (AGCD domain) if for

each pair x, y ∈ D there is a natural number n = n(x, y) such that xnD ∩ ynD
is principal. (Indeed, if for all x, y ∈ D we have n(x, y) = 1, we get a GCD
domain.) Apart from the above example, there are other well known examples,
such as almost factorial domains of Storch. These are Krull domains with torsion
divisor class group (see, for instance, Fossum [Fos73]). (The reader can look up
[Fos73] to check that an integral domain D is Krull if for each height-one prime P ,
DP is a discrete rank one valuation domain, and D is a locally finite intersection
of localizations at height-one primes.) For other examples of AGCD domains, that
use the A+XB[X] construction, the reader may consult [DLMZ] when it appears.
Next, D is called an almost Bézout domain if for each pair x, y ∈ D there is a
natural number n = n(x, y) such that xnD+ynD is principal. Example 3.17 above
may serve as an example again. For more examples of almost Bézout domains, you
may consult [AZ91]. Now, the integral closure of an almost Bézout domain is a
Prüfer domain with torsion ideal class group [AZ91, Corollary 4.8]. Indeed, as we
already know from [ABDFK88] that a one-dimensional almost Bézout domain is
stably strong S-domain, but the general case of almost Bézout domains is not quite
clear.

Now, coming back to our task at hand, a ring A is called a Hilbert ring if
every prime ideal of A is expressible as an intersection of maximal ideals containing
it. So, a one-dimensional domain A is a Hilbert ring if and only if there is a set
{Mα} of maximal ideals of A such that (0) = ∩Mα. Now, because everything in
a Hilbert ring seems to be in terms of maximal ideals, it is fair to ask if Cohen’s
criterion for a Noetherian ring (R is Noetherian if and only if every prime ideal
of R is finitely generated) can be relaxed for Hilbert rings to: A Hilbert ring A
is Noetherian if and only if every maximal ideal of A is finitely generated? A.V.
Geramita asked Robert Gilmer and/or William Heinzer this question and they came
up with a non-Noetherian example of a Hilbert domain whose maximal ideals are
all finitely generated [GH77]. Later, Joe Mott and I [MZ90] came up with the
following theorem.

Theorem 3.18. Let D be a Hilbert domain and let L be a field containing D.
Then D +XL[X] is a Hilbert domain.
The proof is straight-forward and short, and if D is a Hilbert PID with quotient

field L then D +XL[X] is a two dimensional Bézout domain, with each maximal
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ideal principal. This example is uncannily similar to the one constructed in [GH77].
Obviously, taking any Noetherian Hilbert domain for D in Theorem 3.18, you can
construct a Hilbert domain whose maximal ideals are finitely generated and which
is not Noetherian. Theorem 3.18 also pre-empts the obvious question about a
Hilbert domain being an S-domain. The answer of course is,“Not in general”.
(Strangely, [GH77] is still on my recommended reading list because of its useful
auxiliary results.) In [AAZ91], we proved something in a slightly different direction.
The result can be stated as follows.

Theorem 3.19.Let D be an integral domain and S a multiplicative set of D
such that each prime P of D that intersects S, intersects S in detail, that is for
each nonzero prime Q ⊆ P, Q∩S 6= φ. Then R = D+XDS [X] is a Hilbert domain
if and only if both D and DS are Hilbert domains.

It is remarkable that unruly Hilbert domains of [MZ90] did not seem to have
as much effect as Theorem 3.19 had. There was a renewed interest in Hilbert
domains and out came a paper by Anderson, Dobbs, and Fontana [ADF92] on
Hilbert rings arising as pullbacks. In this paper, they discuss as applications the
events of D+(X1, ..,Xn)DS [X1, ..Xn], A+XB[X], and D+M constructions being
Hilbert. In particular, it was shown in [ADF92] that, A+XB[X] is a Hilbert domain
if and only if A and B are Hilbert domains. This includes Theorems 3.18 and 3.19
above. It appears that someone else was interested in showing when A+XB[X] is
a Hilbert domain. On reading this survey Lahoucine Izelgue sent me some of his
old work on this topic. I have decided to include it here because it is simple and it
is efficient.

When is A+XB[X] a Hilbert domain?
Lahoucine Izelgue

On 1991, M. Fontana and S. Kabbaj asked me about conditions under which
a domain of the form A + XB[X] is a Hilbert domain. When looking for an
answer to this question, I learned that D.D. and D.F. Andersons and Mohammad
[AAZ91], had conjectured that “D +XDS [X] is a Hilbert domain if and only if
so are D and DS”. So I attempted an answer to their question that recovers the
conjecture also. However, when I was getting ready with an answer Kabbaj, my
adviser, told me that Anderson, Dobbs, and Fontana were working on the same
subject and that they had got interesting reslts. Indeed, in April 1992, at the first
Fez coference, Fontana Gave me a reprint of their paper [ADF92] in which they
had studied the Hilbert property in pulbacks, and, in fact, it recovers my results.
Now, after reading a first version of the present paper of Moahmmad, I sent him
my results and he told me that they should be brought to light. In fact, even if
my results are the same as that of [ADF92], the proofs that I give here are very
classical and do not use pullback techniques. Also It may serve as a good example
even for undergraduate mathematics students.

Theorem 3.20. Let A ⊂ B be an extension of integral domains and set
R = A+XB[X]. Then, R is a Hilbert domain if and only if A and B are Hilbert
domains.
Proof.
(ii) =⇒ (i). Let Q ∈ Spec(R). There are two possibilities: X ∈ Q or X /∈ Q.
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Case 1: Suppose X ∈ Q, so Q = q + XB[X], where q = Q ∩ A (cf. [FIK 92,
Lemma1]). Since R/XB[X] ' A and A is a Hilbert domain. Hence q = ∩mi

i∈I
,

where q ⊆ mi ∈ max(A) for each i ∈ I. Furthermore, for each i ∈ I, mi+XB[X] ∈
max(R). It follows that Q is an itersection of all maxcimal ideals containing it.
Case 2: X /∈ Q. Let S = {Xn, n > 0}, a multiplicative subset of both R

and B[X], such that S−1R = S−1B[X] = B[X,X−1]. Thus, there exists Q0 ∈
Spec(B[X]) such that X /∈ Q0 and Q0 ∩R = Q. Now, since B is a Hilbert domain,
then so is B[X] (cf. [Kap70, Theorem 3.1]). Therefore, Q0 = ∩

s∈J
Ms, where Q

0 ⊆
Ms ∈ max(B[X]) for each s ∈ J. Moreover, there exists s ∈ J such that X /∈ Ms.
It follows that Q = ∩

s∈J
Ms ∩R.

If X ∈Ms, then Ms ∩R is an intersection of maximal ideals of R (see Case 1).
If X /∈Ms, then X /∈Ms ∩R and Ms ∩R is a maximal ideal of R (cf. [FIK92,

Lemma 1.1] and [Ca88, Proposition 4].
(i) ⇒ (ii). A ' R/XB[X] and hence is a Hilbert domain (cf.[Gil72, Theo-

rem31.18]). To show that B[X] is Hilbert, it is sufficient to show tha t S−1R is
Hilbert, where S = {Xn, n > 0}, since S−1R = S−1B[X] = B[X,X−1] is integral
over B[X +X−1] ' B[X] ( cf. [Gil72, Exercise1- p. 327]), and by [Gil72, Theorem
31.8], B is a Hilbert domain.
Now, let P ∈ Spec(S−1R), there exists Q a prime ideal of R such that X /∈ Q

and P = S−1Q. Since R is a Hilbert domain, Q = ∩
s∈J
Ms, with Q ⊆Ms ∈ max(R)

for each s ∈ J . Moreover, there exists s ∈ J such that X /∈ Ms. Let I1 = {s ∈ J ;
X ∈ Ms} and I2 = {s ∈ J ; X /∈ Ms}. We claim that P = ∩

s∈I2
S−1Ms : indeed,

let f(X) = h(X)
Xn ∈ ∩

s∈I2
S−1Ms, then h(X) ∈ Ms for each s ∈ I2 and X ∈ Ms for

each s ∈ I1. Therefore, Xh(X) ∈ ∩
s∈J
Ms = Q. As X /∈ Q, then h(X) ∈ Q, and

hence f(X) = h(X)
Xn ∈ S−1Q = P. Thus, ∩

s∈I2
S−1Ms ⊆ P. The reverse inclusion is

obvious. It follows that P is an intersection of maximal ideals of S−1R and hence
S−1R is a Hilbert domain.
The following corollary confirms the conjecture of [AAZ 91] (see alsoTheorem

3.18 and theorem 3.19 above).
Corollary 3.21. Let D be an integral domain, S a multiplicative subset of D

and K a field containing D.
1) D +XK[X] is a hilbert domain iff so is D.
2) D +XDS [X] is a Hilbert domain iff so are D and DS .

Corollary 3.22. Let A ,→ B be an integral extension of domains and set
R = A+XB[X]. Then R is a Hilbert domain iff A is a Hilbert domains iff B is
a Hilbert domain.
Proof.
(i)⇔ (ii). It follows from Theorem 3.20.
(ii)⇔ (iii). It follows from [Gil72, Exercise 1 - p. 387].
Example 3.23. R = Z + XZ[Y,X] is a non-Noetherian Hilbert domain of

Krull dimension 3, R is also a stablly strong S-domain (c.f [FIK95, Exemple 3.4]).
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4. Part 4 (Constructing interesting examples 2)

The emphasis of this part of the article is on the use of A+XB[X] in constructing
examples of rings and notions related to star operations. The best approach here
would be to include a brief introduction to the star operations, and to refer a more
interested reader to Gilmer [Gil], Jaffard [Ja], Halter-Koch [HK, ] and to [Z 00]. (I
know that I have already provided some introduction to the star operation in my
talk, but I include a more complete introduction so that the reader does not have
to go back to re-read the terminology.)
Let A be an integral domain with quotient field K, and let F (A) denote the set

of nonzero fractional ideals of A.
A star operation is a function I 7→ I∗ on F (A), with the following properties:
If I, J ∈ F (A) and a ∈ K\{0}, then
(i) (a)∗ = (a) and (aI)∗ = aI∗.
(ii) I ⊆ I∗ and if I ⊆ J, then I∗ ⊆ J∗.
(iii) (I∗)∗ = I∗.
We shall call I∗ the ∗-image ( or ∗-envelope ) of I. An ideal I is said to be

a ∗-ideal if I∗ = I. Thus I∗ is a ∗-ideal, and of course every principal fractional
ideal, including D = (1), is a ∗- ideal for any star operation ∗. An ideal I ∈ F (A) is
called a ∗-ideal of finite type if there is a finitely generated J such that I∗ = J∗. For
all I, J ∈ F (A), and for each star operation ∗, (IJ)∗ = (I∗J)∗ = (I∗J∗)∗. These
equations define what is called ∗-multiplication ( or ∗-product). If {Iα} is a subset
of F (A) such that ∩Iα 6= (0), then ∩(Iα)∗ = (∩(Iα)∗)∗. That is, an intersection of
∗-ideals, for a certain star operation ∗, is again a ∗-ideal. We may call this property
the intersection property. Also if {Iα} is a subset of F (A) such that

P
Iα is a

fractional ideal then (
P
Iα)
∗ = (

P
I∗α)∗.

Define Iv = (I−1)−1 and It =
S{Fv| 0 6= F is a finitely generated subideal of

I}. The functions I 7→ Iv and I 7→ It on F (A) are more familiar examples of star
operations defined on an integral domain. Indeed, if I is finitely generated, then
It = Iv. A v-ideal is better known as a divisorial ideal. An integral ideal M (of A)
that is maximal w.r.t. being a t-ideal is a prime ideal, and maximal t-ideals always
exist. Moreover the following holds.

Proposition 4.1. ([Gri67]) A = ∩AM , where M ranges over maximal t-ideals
of A.

There are of course many more star operations that can be defined on an integral
domain A. But for any star operation ∗, and for any I ∈ F (A), I∗ ⊆ Iv. An ideal
I ∈ F (A) is said to be ∗-invertible, for a star operation ∗, if there is a J ∈ F (A)
such that (IJ)∗ = A. An integral domain A is said to be a Prüfer v-multiplication
domain (PVMD) if every finitely generated I ∈ F (A) is t-invertible. A t-invertible
t-ideal is a t-ideal of finite type, and hence a v-ideal of finite type. So in a PVMD,
for each finitely generated ideal I, I−1 is of finite type. Griffin[Gri67] showed that
A is a PVMD if and only if for each maximal t-ideal P of A, AP is a valuation
domain. Prüfer domains (finitely generated ideals in F (A) are invertible and hence
t-invertible), Krull domains (all I ∈ F (A) are t-invertible[MZ91]) GCD- domains
(for all finitely generated I ∈ F (A), It is principal, and hence invertible) are all
examples of PVMD’s. A closely related concept, to PVMD’s, is that of a v-domain,
i.e., every finitely generated ideal is v-invertible. Indeed, it is easy to establish that
a v-domain A is a PVMD if and only if for each (nonzero) finitely generated ideal
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I, I−1 is of finite type. Now let us call a prime ideal P of A essential if AP is a
valuation domain. A domain A is called essential if there is a family {Pi} of essential
primes such that A = ∩APi . Clearly, by Proposition 4.1, a PVMD is essential. But
is an essential domain a PVMD? Griffin [Gri67], conjectured that the answer was
no. Heinzer and Ohm [HO73] came up with the example of an essential domain
that is not a PVMD. (It is well known that an essential domain is a v-domain see
e.g. [Z78].) But of course the example in [HO73] was lengthy and involved. Now
let us prepare for the first useful and simple example of this section. In [Z78], I
came up with the following statement.
Proposition 4.2.([Z78]) Let I be a finitely generated ideal of a domain A and

lets S be a multiplicative set in A. Then (a) (IAS)
−1 = I−1AS and (b) (IAS)v =

(I−1AS)−1 = (IvAS)v.
It is an extremely simple result and it could be extracted from an exercise in

[Gil72], and part (a) is extremely well known, but it did open up a lot of doors. (An
interested reader may consult [Z00] for further detail on this result.) Yet, at the
same time, it seemed to give the false impression that if S is a multiplicative set in
A, and P is a prime t-ideal of A disjoint from S, then PAS must be a prime t-ideal of
AS . Clearly if A is such that for each finitely generated ideal I we have I

−1 of finite
type, then Proposition 4.2 can be used to show that (IAS)v = IvAS . So in a PVMD,
we have no problems, every prime t-ideal extends to a prime t-ideal in a localization,
and so localization at each prime t-ideal is a valuation domain[MZ81]. Also using
Proposition 4.2, we can show that if A is a PVMD and S is a multiplicative set in
A, then AS is a PVMD. It turns out that the example given in [HO73] was a locally
factorial domain [MZ81]. Now the argument is: If every prime t-ideal of A extends
to a prime t-ideal in a localization, then for a locally factorial (or locally GCD or
PVMD) domain A, take a maximal t-ideal P, P must be contained in a maximal
ideal M. That is, PAM is a prime t-ideal of AM . Now, AM is a GCD domain and
hence a PVMD. But then AP = (AM )PM is a valuation domain, leading to the
conclusion that a locally GCD domain/PVMD is a PVMD. But this goes against
the Heinzer-Ohm example of [HO73]. So the conclusion: There must be at least
one prime t-ideal P in the Heinzer-Ohm example A such that PAM is not a prime
t-ideal, and there must be a finitely generated I such that (IAS)v 6= IvAS for some
multiplicative set S. Now, this establishes the existence of a prime t-ideal P and
a finitely generated ideal I in the domain A of [HO73] such that PAS is not a
prime t-ideal and (IAS)v 6= IvAS . But I would rather see these ideals in action,
and I wanted to be sure that there do exist other simpler examples of locally GCD
domains, that are not PVMD’s. This quest made me study the D + XDS [X]
construction all over again. To show you what I got as a result, I need to prepare
a little.
Call a ∈ A\{0} primal, if for x, y ∈ A, a | xy implies that a = rs such that r | x

and s | y . A nonzero element z is called completely primal if each factor of z is
completely primal. Cohn [C68] was the author of this terminology, and for some
very good reasons. An integral domain A whose nonzero elements are all primal
(and hence completely primal) is called pre-Schreier in [Z87]. Cohn [C68] calls an
integrally closed domain with nonzero elements primal a Schreier domain. He had
thrown in the integrally closed condition for what I call organizational reasons;
polynomial rings over Schreier domains are Schreier, but polynomial rings over pre-
Schreier domains are not (necessarily) pre-Schreier. Now, why do I bring Schreier
and pre-Schreier in the middle of PVMD’s and GCD domains? Apart from the fact



20

that GCD domains are Schreier [C68], the reason is the following statements that
I intend to use.
Proposition 4.3. Polynomial rings over PVMD’s are PVMD’s, and polynomial

rings over GCD domains are GCD domains. (The GCD case is elementary via
Gauss’ Lemma. and the PVMD case, is well known too, see for example [HMM84].
Proposition 4.4. ([Z87]) A PVMD A is a GCD domain if and only if A is

Schreier.

Proposition 4.5. ([CMZ78]) If A is a GCD domain and S a multiplicative set
in A, then A+XAS [X] is a Schreier domain.

The reason behind this statement is the fact that a directed union of Schreier
rings is again Schreier, and obviously we have A+XAS [X] =

S{A[X/s] : s ∈ S},
and if A is a GCD domain each of A[X/s] is GCD. Indeed, the Proposition could
be stated for Schreier domains as well.
Using the above proposition, the following was proved in [CMZ78].

Proposition 4.6. If A is a GCD domain and S a multiplicative set of A, then
A+XAS [X] is a GCD domain if and only if GCD(a,X) exists for each a ∈ A.
Now, in view of Proposition 4.4, to build a locally GCD domain that is not a

PVMD, our best bet would be to build a locally GCD domain that is Schreier but
not a GCD domain. It would also help if the concepts involved are well known
and/or easy to grasp. Well, let us recall that the ring of entire functions E is
a Bézout domain, i.e., every finitely generated ideal is principal, and that every
nonzero nonunit x of E can be written, uniquely, as a product x =

Q
paii , where

pi are countably many mutually non-associated prime elements, and ai are natural
numbers. The condition that pi are mutually non-associated forces each of piE
to be a height-one prime that is also maximal. The following example is taken
from [Z88, Example 2.6]. The illustration however is modified to avoid the jargon
involved in the original illustration.
Example 4.7. Let E be the ring of entire functions, and let S be the multi-

plicative set generated by principal nonzero primes of E. Then R = E +XES [X]
is a locally GCD domain that is not a PVMD.
Illustration. Take any maximal ideal M in R. Then M ∩S = φ or M ∩S 6= φ. If

M∩S = φ, then RM = (RS)MRS . But as RS = ES [X] a GCD domain, we have that
RM is a GCD domain. If, on the other hand,M∩S 6= φ, thenM =M∩E+XES [X].
NowM ∩S 6= φ implies that M ∩E contains a finite product of primes of E and so
contains at least one of them and, because in a Bézout domain two non-associated
primes are comaximal, at most one belongs to M ∩ E. Thus M = (p) +XES [X],
which is a height-two prime. Now RM ⊇ R(R\(p)) = E(p) +XK[X] ⊇ R where K
is the quotient field of E. So, RM is a quotient ring of E(p) + XK[X] which is a
GCD domain by Proposition 4.6.
Now that we have shown that R is locally GCD, and from Proposition 4.5 we

know that R is Schreier, all we need to show is that R is not a GCD domain. For
this, take a ∈ E such that a =

Q
paii is an infinite product of principal primes.

Then as X is divisible by all powers of all principal primes, but never by an infinite
product of them, a and X will have higher and higher common divisors, but will
not have a greatest common divisor. So R is not a GCD domain, and hence not a
PVMD.
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Remarks 4.8 (i) The above example may also be used to establish that, in
general a directed union of GCD domains is not necessarily a GCD domain, and
that a directed union of PVMD’s is not necessarily a PVMD. Indeed, if S is a
multiplicative set in E generated by a finite number of principal primes, thenE(S) =
E+XES [X] is a GCD domain. Indeed, this kind of directed unions of PVMD’s are
PVMD’s, as are GCD domains, under certain situations. For PVMD’s, as I have
already mentioned, the reader may consult [AAZ01]. Dumitrescu and Moldovan
[DM] have also considered a construction similar to D + XDS [X] in connection
with PVMD’s. The paper is worth a read for the various interesting notions, such
as a generalization of the notion of primal elements, they bring in.
(ii) The ring of entire functions is one of the rings a multiplicative ideal theorist

should know about. It is important for several reasons. (For a quick idea of this
ring read Helmer [Hel40], Henriksen [Hen52] and [Hen53], and Gilmer [Gil72, page
146, and references there].) One very important property to remember is that the
ring of entire functions is a completely integrally closed Bézout domain which is
infinite dimensional. So the ring of entire functions is a completely integrally closed
domain whose rings of fractions may not be completely integrally closed.
Now for the concrete examples.
Lemma 4.9. Let a be a nonzero nonunit of the ring E of entire functions, and let

S be as in Example 4.7. Then in R = E+XES [X] we have (a,X)v = (a)+XES [X],
and so every ideal of the form (a) +XES [X] is divisorial.
Proof. Let a 6= 0. If a ∈ S, then (a,X)v = (a)R = (a)+XES [X]. If on the other

hand a /∈ S, then a =Q paii is an infinite product of principal primes. In this case,

(a,X)−1 = (a)∩(X)
aX = 1

aX {aXs : s | a}R = {1s : s ∈ S, and s | a}R. Now, (a,X)v =
((a,X)−1)−1 = {r ∈ R : r{1s : s ∈ S, and s | a}R ⊆ R} = (a)+XES [X]. Obviously
((a) +XES [X]){1s : s ∈ S, and s | a}R ⊆ R, and so (a) +XES [X] ⊆ (a,X)v. Now
let b + Xf(X) ∈ R such that (b + Xf(X)){1s : s ∈ S, and s | a}R ⊆ R, then b
is divisible in E by every distinct paii that divides a and so is divisible in E, by
a =

Q
paii . So b = ca in E, and so b +Xf(X) ∈ (a) +XES [X]. Finally, if a = 0,

then (XES [X])
−1 = ES [X], and so (XES [X])v = (ES [X])

−1
= XES [X].

Lemma 4.10. With R,E, and S as in Example 4.7, every prime ideal of R of
the form P +XES [X] is a t-ideal, where P is an ideal of E.
Proof. Now if P = (p) is principal, then we know that p ∈ S, and so (p) +

XES [X] = p(E+XES [X]) is principal, hence divisorial, and hence a t-ideal. So, let
P be non principal. But then P ∩S = φ, because in this case every nonzero element
of P is an infinite product of primes. Now let (a1 +Xf1(X), .., an+Xfn(X)) be a
finitely generated ideal of R contained in P +XES [X]. Then (a1+Xf1(X), .., an+
Xfn(X)) ⊆ ((a1, .., an) +XES [X]) = (a) +XES [X] ⊆ P +XES [X]. Now (a) +
XES [X] is divisorial by Lemma 4.9. (Here (a1, .., an) = (a) because E is a Bézout
domain.)
Now, let us call a finitely generated ideal I of an integral domain A bad if

(IAS)v 6= IvAS , where S is some multiplicative set of A disjoint from I. Also, let
us call a prime ideal P of A badly behaved if for some multiplicative set S of A,
disjoint from P, PAS is not a t-ideal. It is clear that any prime t-ideal that contains
a finitely generated bad ideal is badly behaved.

Example 4.11. Let R,E, and S be as in Example 4.7, and let a ∈ E be
an infinite product of powers of principal primes. Then (a,X) is a bad ideal in
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R = E +XES [X] and every prime ideal of the form P +XES [X] with P ∩ S = φ
is a badly behaved prime t-ideal.
Illustration. Note that (a,X)∩S = φ and that ((a,X)RS)v = ((a,X)ES [X])v =

ES [X], yet (a,X)vRS = ((a) + XES [X])ES [X] = (a,X)ES [X] 6= ES [X]. Next,
each ideal of the form P +XES [X] with P ∩S = φ contains bad ideals of the form
(a,X), where a is an infinite product of principal primes in E, and hence is badly
behaved.

Obviously a prime t-ideal P would be well behaved if for each multiplicative set S
disjoint from P, PAS is a t-ideal. Well behaved prime t-ideals were studied in [Z90].
Domains in which every prime t-ideal is well behaved may be called well behaved
domains. These domains were characterized in [Z90] as domains A in which no
finitely generated nonzero ideal is bad, i.e., for each finitely generated nonzero ideal
I and for each multiplicative set S disjoint from I, we have (IAS)v = IvAS . So,
most of the well known domains, Noetherian, Krull, PVMD, Prüfer, coherent are
well behaved. Among the badly behaved domains are essential domains that are
not PVMD’s. If you come across a badly behaved domain, it is public service to
report it; reporting it is just like putting a warning light close to submerged rocks
at the sea.

The question of when A + XB[X] is a GCD domain has been studied (also
in the case of A + XB[[X]]) by Anderson and Nour-El-Abidine [AN 01] and by
Dumitrescu, Radu, Salihi and Shah [DSRS00]. In both papers it is decided that
A + XB[X] is a GCD domain if and only if A is a GCD domain and B = AS ,
where S is a splitting multiplicative set of A. This result extends: Given that A is
a GCD domain and S a multiplicative set in A, A+XAS [X] is a GCD domain if
and only if S is a splitting set, i.e., each a ∈ A∗ can be written as a = bs, where
s ∈ S and b is such that (b)∩ (t) = (bt) for all t ∈ S [Z88]. Later, in [AAZa91], the
notion of splitting sets was strengthened into lcm splitting sets: splitting sets S of
A that have the extra property that for each s ∈ S and for each a ∈ A, (a) ∩ (s)
is principal. This notion was then used to prove various Nagata type Theorems.
Now, as I have already said in my talk, this notion has developed into t-splitting
sets and has proved useful.
In [HM82], Heitmann and McAdam introduced an intriguing notion. They call

an integral domain A with quotient field K a distinguished domain if for each
z ∈ K∗, (1) : (z) * Z(R/((1) : (z−1))). A distinguished domain is integrally closed.
Prüfer domains, and Krull domains are distinguished domains and, obviously, a
finite conductor distinguished domain is a PVMD [Z78]. (Here, A is a finite con-
ductor domain if for all a, b ∈ A we have aA ∩ bA is finitely generated.) From
what they did with the distinguished domains, it seemed as if it was another way
of looking at PVMD’s. When Evan Houston paraded that paper in front of me (in
1987 or 88), I blurted out ... it is just PVMD’s. Then I got busy in first writing a
few hurried papers and then in falling ill. In 1998, I happened to look at that paper
again and realized the mistake I had made. I talked to Dan Anderson, who quite
reluctantly agreed to work with me on it. His reluctance was partly because those
days I often faltered even in speech and partly because working on the work of two
big giants is no joke. In any case we wrote together with Kwak [AKZ]. We found
out, for instance, that A is a distinguished domain if and only if for each z ∈ K∗,
we can write z = a

b , a, b ∈ A, where b /∈ Z(R/((a) : (b))) if and only if for each
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z ∈ K∗, we can write z = a
b , a, b ∈ A such that (a) : (b) = (a) : (b2). Using these

new criteria, we showed the strong links between the PVMD’s and the distinguished
domains. For instance, we showed that a two-dimensional distinguished domain is
a PVMD and that if A is a PVMD, then A[X] is distinguished, though this does
not quite prove that each PVMD is distinguished. However, I feel that a PVMD is
distinguished, and I would be very happy if I am proven wrong (or right for that
matter). Now to make the long story short, in [AKZ] we constructed an example
which fits here nicely.
Example 4.12. Let (V, (p)) be a discrete rank n−1 valuation domain for n ≥ 3,

and let Q =
T∞
n=1 p

nV. Then R = V +XVQ[X] is an n dimensional distinguished
domain that is not a PVMD.
The verification that R is a distinguished domain would take a lot more expla-

nation than I can afford to put here. (If you are interested, look up the paper
if and when it appears, or ask me for a copy.) So, we settle for a quick proof of
the fact that R is not a PVMD. For this, all we have to note is that the prime
ideal Q + XVQ[X] =

T∞
n=1 p

nR is a t-ideal. Being an intersection of principal
ideals, it is actually divisorial. In any case, if S = {pn}, then (Q + XVQ[X])RS
= (Q+XVQ[X])VQ[X], which is not a t-ideal of VQ[X], as for every nonzero q ∈ Q,
((q,X)VQ[X])v = VQ[X]. I have found this construction from a valuation domain a
useful source of examples. For instance, Example 4.12 can be used to provide exam-
ples of Schreier domains that are not GCD domains via Proposition 4.5. Moreover,
the construction in Example 4.12 provides examples of non-Prüfer integrally closed
stably strong S-domains.
Recall that a prime ideal P of the ring of polynomials A[X] is called an upper

to zero if P ∩ A = (0). PVMD’s can be characterized as integrally closed integral
domains A such that every prime upper to zero contains a polynomial f(X) such
that (c(f))v = A ([Z84]). (Here c(f) denotes the ideal generated by the coefficients
of f(X)). Now a prime upper to zero, being a minimal prime of a principal ideal, is
a prime t-ideal [HH80] (see also [Z78]). Moreover, a prime t-ideal that is t-invertible
is a maximal t-ideal [HZ89], and any prime ideal of A[X] that contains a polynomial
f(X) with (c(f))v = A is t-invertible, and conversely. Putting this information all
together, we conclude that an integrally closed integral domain A is a PVMD if
and only if every prime upper to zero of A[X] is a maximal t-ideal. In [HZ89], we
studied integral domains in which every (prime) upper (U) to zero is a maximal
(M) t-ideal (T) and called them UMT domains. It was mainly Evan Houston’s
hobby horse and it has stayed that way ever since. (An interested reader may want
to read [Z84].) My contribution to the idea was at best an observation here and
a question there. In any case, in a recent paper [FGH98] the authors dub UMT
domains as,“PVMD’s with the integrally closed hypothesis removed”. To prove
their point, they show that the UMT property survives polynomial ring formation
and taking rings of fractions and that a UMT-domain is indeed well behaved. Now,
as I have already mentioned, given that A is a PVMD and S a multiplicative set
in A, R = A+XAS [X] is a PVMD if and only if S is a t-splitting set if and only
if (a,X) is t-invertible in R for each a ∈ A, I ask the following question.
Question 4.13. Let A be a UMT-domain, let S be a multiplicative set in A,

and let X be an indeterminate over AS . Under what conditions is R = A+XAS [X]
a UMT-domain?
My conjecture is that with all that is given in Question 4.13, R = A+XAS [X]

is a UMT-domain, if and only if, (a,X) is t-invertible in R for each a ∈ A. If you
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do get interested in this question, look up [AAZ01] where the PVMD case is dealt
with, and look up [FGH98], where questions like Question 4.13 are considered for
a couple of kinds of pullback constructions. Another thing that might be useful is
the fact that A is a UMT-domain if and only if for each maximal t-ideal P of A,
the integral closure of AP is a Prüfer domain.

5. Part 5 (Other links)

In this part, I intend to include topics that I would have liked to treat in detail,
but the thought of this survey getting too long keeps me from doing so.
In [CMZ78] it was shown that if D is a Noetherian domain and S any multiplica-

tive set in D, then D+XDS [X] is coherent (finite intersection of finitely generated
ideals is finitely generated). In this connection here is a scheme of examples of
coherent rings that might be of some interest. (These examples are more in the
spirit of the generalized D+M construction of [BR76].) For this, let us recall that
an integral domain A is a an h-local ring if each nonzero prime ideal P of A is
contained in a unique maximal ideal of A, and each nonzero ideal of A is contained
in at most a finite number of maximal ideals. Clearly, each quasi local domain is h-
local. The standard reference for h-local domains is Matlis’ book [Mat72]. Looking
at the definition then, we have the rather obvious proposition.
Proposition 5.1. If A is a quasi-local domain and K = qf(A), then A+XK[X]

is h-local. If in addition A is coherent, then so is A+XK[X].
The proof is straight-forward and so is left to the reader.
In [N91], an integral domain A was said to have property P∗ if for every finitely

generated nonzero ideal I of A, we have that I−1 is of finite type. It turns out
that the property P∗ is equivalent to the property that Iv ∩ Jv is of finite type
for finitely generated I and J [FG, Proposition 3.6]. Following [FG], the P∗

property was dubbed as the v-coherent property in [GH97]. In [GH97], the au-
thors study the v-coherent property in the pullbacks stemming from the diagram
S = π−1(A) ,→ B

↓ ↓π
A ,→ B/M

, where M is a maximal ideal of B and A is a subring of

B/M. Now, the v-coherent property is interesting in that a number of well known
domains, PVMD’s, Krull domains, and Mori domains are v-coherent. (Recall that
an integral domain A is a Mori domain if A satisfies ACC on integral divisorial
ideals. Equivalently, A is Mori if and only if each nonzero ideal I of A contains
a finitely generated ideal J such that Iv = Jv.) On the other hand, there is no
dearth of non v-coherent domains. Indeed, as we have already mentioned in Part 4,
a v-coherent v-domain is a PVMD (This is also [GH97, Proposition 3.2]) . So any
v-domain that is not a PVMD is not v-coherent. Now an essential domain being
a v-domain, whenever we find an essential domain that is not a PVMD we have
a non v-coherent domain. This means that Example 4.7 of this article is a simple
enough example of a non v-coherent ring.
Let us also note that an h-local ring A is a ring of finite character, in that there

is a set Ω = {P} of prime ideals such that A = TP∈ΩRP and each nonzero nonunit
of A belongs to at most a finite number of members of Ω. A Noetherian ring A is
also a ring of finite character in that Ω = the set of maximal primes of principal
ideals. In fact, as maximal primes of a principal ideal in a Noetherian domain
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are t-ideals, being of grade one, we can say that a Noetherian ring is of finite t-
character. Some examples of rings of finite t-character can be found in [DLMZ]. The
most well known rings of finite t-character are the rings of Krull type of Griffin’s
[Gri68]. Rings of Krull type are PVMD’s of finite t-character. There are a number
of examples of rings of finite t-character given in [DLMZ], some of them use the
A+XB[X] construction, and some of these examples are not rings of Krull type.
One example of a ring of finite t-character, that is not integrally closed, is Example
3.17 of this article. It appears that we could do with a few more examples of rings
of finite t-character that are not rings of Krull type nor are Mori domains, and I
am sure that the A+XB[X] construction would provide plenty of them.
It is odd but true that the A+XB[X] construction can provide examples that are

simple enough to be taken to the undergraduate classroom. I recall having written
a paper [JZ96], in collaboration with Tess Jackson, when I was at Winthrop College.
This paper appeared in a journal called Primus and never got reviewed, so very
few people know about it. In this paper, we used the A + XB[X] construction
to give examples of non-Noetherian, non UFD rings that satisfy ACC on principal
ideals, and hence are atomic, such as Q + XR[X] where Q represents rationals
and R represents reals respectively. Of course there were other examples, but of
importance, in my opinion, was the appeal to the algebraists to be on the look-out
for good and simple examples in their area of research. Simple examples, without a
lot of jargon, in my opinion, enhance understanding and help remove the impression
that algebra is hard. Giving undergraduates more examples has another advantage,
these youngsters will remember them and may later find ways of using them. Now
that I have a chance, let me beat the drum for simplicity a bit harder. I will
not make a long argument. God Almighty wanted us to learn about the so called
Pythagoras Theorem, so He put the examples right under our noses, as close as 3,
4, 5. It seems to me that the Babylonians were so impressed that they even used
the product of these digits to devise their, sexagecimal, number system. Of course
some problems need sustained effort, and for them we have the deductive system,
but that again is a way of breaking up a harder problem into simpler steps. Let us
keep it that way. Coming back to [JZ96] and to Tess. Tess died in a car accident
a couple of years after the publication of the paper. She was an eager pedagogist
and a very pleasant person, may she rest in peace. She died young, in fact her
promotion to Associate Professorship came posthumously.
Gabriel Picavet [Pic97] has written an article on “composite rings”, meaning the

rings of the form R = A + XB[X] . He forgot to mention that there is, already,
extensive material on these rings. But, what he has produced is a useful article.
If you are interested in category theory, it is a must read. He shows for instance,
that the symmetric algebra SA(B) maps onto R. He also handles the direct limit
questions very well. What is more impressive from my point of view is that he
actually considers rings (which may have zero divisors). I have been hoping to do
it once I settle down some place. In any case, now we have [Pic97] and I expect
some good papers coming out of it.
G.W. Chang, a student of B.G. Kang, has recently sent me a preprint on a

generalization of Krull domains [Cha]. He comes up with the rather interesting
notion of a Pinched Krull domain (pinched) at a prime ideal. An integral domain
A may be called a pinched Krull domain at prime ideal P, if I is t-invertible for
every ideal I " P . (Recall that A is a Krull domain if and only if every nonzero
ideal of A is t-invertible, see [Ja60, p82] or [MZ91, Theorem 2.5].) Indeed, it
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attaches Krull’s name to some very unlikely rings: a one dimensional (quasi) local
domain is pinched Krull if pinched at its maximal ideal and so is a discrete rank
2 valuation domain (V, pV ) if pinched at

T
pnV. On the other hand, A is a Krull

domain if A is pinched Krull at (0). What is of interest here is the fact that if A is
a Krull domain and K is a field containing A, then A+XK[X] is pinched Krull at
XK[X]. Chang [Cha] also mentions an old example of an integrally closed non-Mori
domain, whose prime t-ideals are all of finite type. The example appeared in [MZ91,
page 564], and it was constructed as D = Q[π] +XR[X], where Q represents the
algebraic closure of rationals in the reals R and π is your most notorious irrational.
In Chang’s terminology Q[π] +XR[X] is also a pinched PID (UFD) at XR[X] in
that every ideal (principal ideal) not contained in XR[X] is principal ( respectively
a product of principal primes). What interests me in this example is the easily
verifiable fact that every element of Q[π] +XR[X] that is expressible as a product
of irreducible elements is a product of primes and hence has a unique factorization.
This is something that does not hold in Q +XR[X], (or in Q +XR[X]) because
in this ring X is an irreducible element that is not a prime because X | (Xπ )2 and
X - Xπ . However, as indicated in [AAZ91, page 121], Q+XR[X] is a, so called, half
factorial domain, i.e., every nonzero non-unit f of Q+XR[X] has the property that
every expression of f as a product of irreducibles has the same length. The notion
of HFD was introduced by Zaks [Zak76], [Zaks76]. An interested reader may also
want to look up Skula’s paper [Sku76] on c-semigroups for a comparative study.

It may be noted that an integral domain A is an HFD, if A is atomic, and every
nonzero non-unit f of A has the property that, every expression of f as a prod-
uct of irreducibles has the same length. This reminds me of an old observation of
mine. Abraham Zaks started [Zak76], with the following: “Let R be a commutative
domain with 1. We call R a Half Factorial domain (HFD) provided the equalityQn
i=1 xi =

Qm
j=1 yj implies m = n, whenever the x’s and the y’s are non unit and

irreducible elements of R.” Then he went on to mention a general criterion that
required each of the nonzero nonunit elements of his HFD to have a “complete
decomposition” as a product of irreducible elements. Now, let us call A an Unre-
stricted Half Factorial domain (UHFD) provided the equality

Qn
i=1 xi =

Qm
j=1 yj

implies m = n whenever the x’s and the y’s are non unit and irreducible elements
of A.
For the ease of expression, if x ∈ A is an element that is expressible as a product

x =
Qn
i=1 xi, where xi are atoms, we shall say that x has an atomic factorization of

length n. So, in simple language, A is an UHFD if for every element x of R that has
an atomic factorization of length n, every other atomic factorization of x will be of
the same length. Just to establish that the class of proper UHFD’s is nonempty, let
us see some straight-forward examples. Obviously every HFD is an UHFD. Now
we can use the following proposition to make as many examples as we want.
Proposition 5.2. Let A be an UHFD that is not a field, let K be the quotient

field of A, and let X be an indeterminate over K. Then A+XK[X] is an UHFD.
Proof. A typical element f(X) of R = A+XK[X], can be written as f(X) =

a0 +Xg(X) where a0 ∈ A and g(X) ∈ K[X]. Now if a0 = 0, then as X is divisible
by every nonzero element of A, there is no hope of writing f(X) as a product of
atoms. If, on the other hand a0 6= 0, then f(X) = a0(1 +Xh(X)). Now it is easy
to show that (1 +Xh(X)) is a product of primes of R, so that in this case f(X)
is expressible as a product of atoms if and only if a0 is expressible as a product of
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atoms. Now as all the atomic factorizations of a0 are of the same length, we have
that all the atomic factorizations of f(X) have the same length.
Of interest here is the fact that in f(X) = a0(1+Xh(X)), the factor (1+Xh(X))

is a product of primes, and hence is an inert constituent of the factorization of
f(X) = a0(1 + Xh(X)). Thus, if f(X) is a product of atoms, then f(X) would
have all the properties of atomic factorization that a0 has. So the above proposition
is a scheme for defining unrestricted UFD’s as well.
Clearly, every GCD domain is an unrestricted UFD, because in a GCD domain

each atom is a prime. Another example comes from the so called pre-Schreier
domains, integral domains whose group of divisibility is a Riesz group. It was shown
by Cohn [C68] that in a Schreier domain every atom is a prime. Using the same
procedure, we can show that every pre-Schreier domain is an unrestricted UFD.
Another example of unrestricted UFD’s is the rings A, that satisfy the property
that every primitive polynomial of A[X] is super primitive. Here f ∈ A[X] is
primitive if c(f) is not contained in any proper principal ideal of A, and f is super
primitive if (c(f))−1 = A. It was shown by Arnold and Sheldon in [AS75] that in a
domain with PSP property every atom is a prime. It would be interesting to find
other examples of unrestricted HFD’s and UFD’s etc. One could address a question
such as: Suppose that A ⊆ B is an extension of HFD’s such that B[X] is an HFD.
Must A+XB[X] be an UHFD? It may not be a very hard question but often the
simple questions lead to more interesting situations. In this connection the reader
may look up [BIK95, section 3].
These days a new variation of A+XB[X] construction is appearing and it is a

welcome new addition. It is more in the tradition of D+I, but sufficiently pleasant
for me to remember it. It starts with a domain A, picks an ideal I in A, and forms
the ring: A+XI[X]. A study of A+XI[X] was carried out in [GPR01] assuming
that A is a UFD, and recently Sebastian Pellerin has sent me a preprint [PR] that
carries out a similar study with A a Dedekind domain. Let me end the article with
a brief description of elasticity, the topic of study of these articles. Let A be an
atomic domain, and let A(A) denote the set of all irreducible elements of A. Then
ρ(A) = sup{m/n : x1...xm = y1...yn, xi, yj ∈ A(A)} is called the elasticity of A.
From the definition it follows that 1 ≤ ρ(A) ≤ ∞ and that A is an HFD if and only
if ρ(A) = 1. In [GPR01], for instance, it was shown that if A is a UFD and I is a
non-prime ideal then ρ(A +XI[X]) ≥ 2 and that for A a UFD, A +XI[X] is an
HFD if and only if I is a prime ideal.
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