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Abstract. Let D be an integral domain with quotient field K and let S be

a set of nonconstant polynomials of D[X ]. We say S satisfies property (P)

(resp., the extension D[X] ⊆ K[X ] is S-inert) if whenever f ∈ S factors as

f = gh in K[X ] where deg g,deg h ≥ 1, then f = αβ where α, β ∈ D[X] with

degα, deg β ≥ 1 (resp., there is a 0 6= u ∈ K with ug, u−1h ∈ D[X]). Then D
is integrally closed (resp., integrally closed with Pic(D) = 0, integrally closed

with t-class group Clt(D) = 0, Schreier) ⇔ the extension D[X ] ⊆ K [X ] is
S-inert ⇔ S satisfies property (P), where S is the set of monic polynomials

of D[X] (resp., S = {f ∈ D[X ] | deg f ≥ 1 and Af = D}, S = {f ∈ D[X ] |
deg f ≥ 1 and A−1f = D}, S is the set of all nonconstant polynomials of D[X]).
Here Af is the ideal of D generated by the coefficients of f .

Throughout this note D will be an integral domain with quotient field K. It is
known that D is integrally closed if and only if each irreducible monic polynomial

of D[X] is prime ([2, Theorem 3.2], [7, Theorem]). This is easily seem to be

equivalent to the condition that each monic polynomial ofD[X] that has a nontrivial
factorization in K[X] has a nontrivial factorization in D[X]. The purpose of this
paper is to prove similar results for other sets of nonconstant polynomials. For

example, we show that D is integrally closed with Pic(D) = 0 if and only if each
nonconstant irreducible polynomial of D[X] with unit content is prime if and only
if each nonconstant polynomial of D[X] with unit content that factors nontrivially
inK[X] also factors nontrivially in D[X]. To state our results we need the following
definition.

Definition 1. Let D be an integral domain with quotient fieldK and let S be a set
of nonconstant polynomials of D[X]. Then the set S satisfies property (P) (resp.,
the extension D[X] ⊆ K[X] is S-inert) if for each f ∈ S, whenever f = gh in
K[X] where deg g, deg h ≥ 1, then f = αβ where α,β ∈ D[X] with degα, degβ ≥ 1
(resp., there exists 0 6= u ∈ K with ug, u−1h ∈ D[X]).

For f ∈ K[X], the content Af of f is the (fractional) ideal of D generated by the

coefficients of f . Recall that for a nonzero fractional ideal I of D, I−1 = [D : I ] =
{x ∈ K | xI ⊆D} and Iv = (I−1)−1. Also, recall that if D is integrally closed, then

(Afg)v = (AfAg)v for all nonzero f, g ∈ K[X] [6, Proposition 34.8]. For a survey
of results concerning the contents of polynomials see [1]. We next show that under

certain conditions the set S satisfies property (P) if and only if each irreducible

element of S is prime.
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Proposition 2. Let D be an integral domain with quotient field K and let S ⊆
D[X] be a set of nonconstant polynomials where each f ∈ S satisfies A−1f = D

(or equivalently, (Af )v = D). Then S satisfies property (P) if and only if each

irreducible element of S is prime.

Proof. (⇒) Suppose that S satisfies property (P). Let f ∈ S be irreducible inD[X].
Then property (P) gives that f is irreducible (and hence prime) in K[X]. We can
then quote [9, Theorem A], but we prefer to sketch the proof. Since A−1f = D, it

is easily checked that fK[X] ∩ D[X] = fD[X] [9, Lemma 1]. Since fK[X] is a
prime ideal, so is fD[X]. (⇐) Assume that each irreducible element of S is prime.
Suppose that some f ∈ S has a factorization f = gh inK[X] where deg g, deg h ≥ 1,
but no such factorization exists inD[X]. Since A−1f = D, f has no nonunit constant

factor, so f is irreducible in D[X]. Thus f is prime in D[X] and hence prime and
irreducible in K[X], a contradiction. ¤
The next theorem gives a number of conditions equivalent to D being integrally

closed.

Theorem 3. Let D be an integral domain with quotient field K and let S be the
set of nonconstant monic polynomials of D[X]. Then the following conditions are
equivalent.

(1) D is integrally closed.

(2) The extension D[X] ⊆ K[X] is S-inert.
(3) The set S satisfies property (P).
(4) Each irreducible element of S is prime.
(5) Each element of S is a product of prime monic polynomials.
(6) The elements of S have unique factorization into monic irreducible polyno-

mials.

Proof. (1) ⇒ (2) Let f ∈ D[X] be monic. Suppose that f = gh in D[X] where
deg g,degh ≥ 1. Choose 0 6= u ∈ K so that ug, u−1h are monic in K[X]. Now
Af = D, so D = (Af )v = (Augu−1h)v = (AugAu−1h)v ⊇ AugAu−1h ⊇ Augu−1h =
Af = D. Since Aug ,Au−1h ⊇ D, Aug = Au−1h = D. Hence ug, u−1h ∈ D[X].
(2)⇒ (3) Clear. (3)⇒ (4) Proposition 2. (4)⇒ (1) Let α ∈ K be integral over D.
Let f be the monic polynomial in D[X] of least degree with f(α) = 0. Certainly f
is irreducible. Thus f is prime in D[X] and hence prime and irreducible in K[X].
But since X − α is a factor of f in K[X], we must have f = X − α. Thus α ∈ D.
(4)⇒ (5) This follows since each monic polynomial is a product of irreducible monic

polynomials. (5) ⇒ (6) This follows from the well known fact that factorization

into primes is unique. (6)⇒ (1) [7, Theorem]. ¤
Concerning Theorem 3, we remark that the implication (1)⇔ (5) is given in [2,

Theorem 3.2] and the implication (1)⇔ (6) is given in [7, Theorem].

For the next theorem, our main result, we need some remarks on star operations.

For an introduction to star operations, see [6]. Let F (D) be the set of nonzero
fractional ideals of D. A closure operation ∗ on F (D) is called a star operation if
D∗ = D and (aA)∗ = aA∗ for each 0 6= a ∈ K and A ∈ F (D). Further, ∗ has finite
character if A∗ =

S{B∗ | 0 6= B ⊆ A is finitely generated}. The function A→ Av

is a star operation. Two examples of finite character star operations are the d-
operation A→ Ad = A and the t-operation A→ At =

S{Bv | 0 6= B ⊆ A is finitely
generated}. Observe that if A is finitely generated, then At = Av; in particular
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for a polynomial f ∈ K[X], (Af)t = (Af )v. An ideal A ∈ F (D) is ∗-invertible
if (AB)∗ = D for some B ∈ F (D); we can then take B = A−1. If ∗ has finite
character and A is ∗-invertible, then A has finite type, that is, A∗ = (c1, . . . , cn)∗

for some c1, . . . , cn ∈ K. The ideal A is a ∗-ideal if A = A∗. The set of ∗-invertible
∗-ideals forms a group under the product A ∗ B = (AB)∗ and this group modulo
its subgroup of principal fractional ideals is called the ∗-class group of D and is

denoted by Cl∗(D). For the case ∗ = d, we get the usual Picard group Pic(D) and
for the case ∗ = t, we get the t-class group Clt(D).

Theorem 4. Let D be an integral domain with quotient field K and let ∗ be a finite
character star operation on D. Let S∗ = {f ∈ D[X] | (Af )∗ = D and deg f ≥ 1}.
Then the following conditions are equivalent.

(1) D is integrally closed and Cl∗(D) = 0.
(2) The extension D[X] ⊆ K[X] is S∗-inert.
(3) The set S∗ satisfies property (P).
(4) Each irreducible element of S∗ is prime.
(5) Each element of S∗ is a product of primes from S∗.

Proof. (1) ⇒ (2) Write f = gh in K[X] where f ∈ S∗ and deg g,degh ≥ 1. Note
that (Af)∗ = D gives (Af )v = (Af )t = D. Now D integrally closed gives AgAh ⊆
(AgAh)v = (Agh)v = (Af )v = D. Thus D ⊇ (AgAh)

∗ ⊇ (Agh)
∗ = (Af)

∗ = D
and so (AgAh)

∗ = D. Hence Ag and Ah are ∗-invertible and thus principal; say
(Ag)∗ = αD and so (Ah)∗ = α−1D, 0 6= α ∈ K. Then α−1g,αh ∈ D[X]. (2)⇒ (3)

Clear. (3) ⇒ (4) Proposition 2. (4) ⇒ (5) Clear. (5) ⇒ (1) Note that each

monic polynomial of D[X] is a product of prime monic polynomials. By Theorem
3 D is integrally closed. Let I ⊆ D be ∗-invertible. Say I∗ = (a0, . . . , an)

∗ and
I−1 = (b0, . . . , bm)

∗ where a0, . . . , an, b0, . . . , bm ∈ K. Put f = a0 + a1X + · · · +
anXn and g = b0 + b1X + · · · + bmXm. Now since Af is ∗-invertible (Afg)∗ =
(AfAg)∗ = D. (Indeed, by the Dedekind—Mertens Theorem [6, Theorem 28.1]

An
fAfg = An

fAfAg for some n. Then (An
f )
−1An

fAfg = (An
f )
−1An

fAfAg and hence

(Afg)
∗ = (AfAg)

∗ since An
f is ∗-invertible.) Now in D[X] we can factor fg =

f1 · · · fs where each fi is prime and has (Afi)
∗ = D. Hence fi is prime in K[X].

By unique factorization in K[X] (and re-ordering if necessary), g = λf1 · · · fl, say,
where 1 ≤ l < s and 0 6= λ ∈ K. Then f1 . . . fs = fg = f(λf1 · · · fl) so fl+1 · · · fs =
λf . Hence λ(Af )∗ = (Aλf)∗ = (Afl+1···fs)∗ = (Afl+1 · · ·Afs)

∗ = D. Thus I∗ =
(Af )∗ = λ−1D is principal. ¤
The implication (1) ⇔ (5) of Theorem 4 for a special class of finite-character

star operations is given in [3, Theorem 4].

The last theorem considers the case where S is the set of all nonconstant poly-
nomials of D[X]. We recall the notion of a Schreier domain which was introduced
by P.M. Cohn [5]. An element c of a domain D is primal if c | a1a2 implies that
c = c1c2 such that c1 | a1 and c2 | a2. A Schreier domain is an integrally closed
domain in which every element is primal. For a survey of Schreier domains, see [1].

Theorem 5. Let D be an integral domain with quotient field K and let S be the set
of nonconstant polynomials of D[X]. Then the following conditions are equivalent.

(1) D is a Schreier domain.

(2) The extension D[X] ⊆ K[X] is an S-inert extension.
(3) The set S satisfies property (P).
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Proof. (1)⇔ (2) [4, page 562]. (1)⇔ (3) [8, Theorem 3]. ¤
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