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Let D be a commutative integral domain with 1. An element
% € D is called primal if xlab implies that x = rs where vla and
s|b. An integrally closed integral domain D is called a §chreier
domain if every element of D is primal. We call D pre-Schreier if
every element of D is primal. Schreier domains were introduced by
Cohn [E] and what we call pre-Schreier domains, have featured in
[5] and in several other papers (cf. e.g. [6] and [13]). Along
with several other characterizatiomns of pre~Schreier domains we
show that D is a pre-Schreier domain if and only if forx
ai,a2,b1,b2 €D, aibjix implies that x = rs where ailr and bjls
for i,i = 1,2. (This gives us yet another characterization of
UFD's as : D is a UFD if and only if (a) every element of D is a
product of finitely many irreducible elements and (b) for
agsdy 3 bpb2 €D, aibjlx implies that x = xs where ailr and bjls)a
In the course of establishing this characterization we show that

pre-Schreier domains have the following property.
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(*). For ai,b, €D i= 1,00.,mand J = 1,...,0
(0 G = n (ap) .
i i 1,3 -

1f we call an integral domain satisfying (¥} a *-domain then a
pre-Schreier domain is a *—~domain but not conversely. This property
is interesting in that it is an extremely weak propexty shared by
integral domains which do mot share the pre—Schreier property. For
example, a Priifer domain is a *-domain and so is a Bezout domain
whereas according to [5] (Th. 2.8) a Prifer domain which is also
pre—-Scheier is a Bezout domain. Weak though this property is, its
presence gives the ring a specific charvacter. For example a Krull
domain which is also a *-domain is locally factorial., In fact, as

Anderson et al [2] show (Corellary 3.9), a still weaker property

(*) a8, 3 b1°b2 € D implies ((ai)(](aZ))((bi)f](bZ)) = n(aibj)

makes a noetherian domain intc a locally factorial domain. This imn
fact means that in some situations this rather mild property is
equivalent to the stronger properties : the pre-Schreier property

and / or the GCD—property.

Tn the course of establishing the above,we also show that if D
is pre-Schreier and if 5 is a multiplicative set im D then DS is
again pre—Schreier. We also give a simple example of a strictly
pre-Schreier domain and illustrate using a simple computation,
that if D is strictly pre-Schreier then D[x] is not pre-Schreier
where X is an indeterminate over D, Finally the notation and
terminology used in this article comes mainly from [5] and [10],
and we use the letter D to denote a commutative integral doma in

with 1 and we use K for the quotient field of D.

Apart from the introductionm, this article is split into four
sections. In the first section we present severxal characterizations
of pre-Schreier domains and show that a pre-Schreier domain has the

*—property. In section 2 we characterize the *—domains and by
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linking the various characterizations of pre—Schreier domains with
those of Riesz groups we establish that the *-property emerges
from a discrepancy between the definition of product of complexes
in groups and that of the product of ideals in rings. Also inclu—
ded in fhis section is a comparison of the *-domains with the
condensed domains of [3]. In section 3, we establish a method of
translating some results on Prifer domains to results on some
generalizations of Priifer domains. We use this method to study the
effects of the *—property on the integral domains known as Priifer

v-multiplication domains (PVMD's). We show that a PVMD has the

*-property if and only if it is locally a GCD-domain. From this it
follows that a quasi-local PVMD (Krull domain) is a GCD-domain(UFD)
if and only if it is a *-domain. In section 4, we show that in a
pseudo valuation domain the *-property is equivalent to the pre-
Schreier property. We use the observations made in this section to
construct a simple example of a pre-Schreler domain which is not
integrally closed and give computed evidence of the fact that if D
is strictly pre-Schreier then a ring of polynomials over D is not

pre-Schreier.

Finally, this article is a revised versiom of an earliex

unpublished note, "On pre-Schreier domains™ (cf. [2] and [31).

1. Pre-Schreier domains and the *-property.

THEQREM 1.1. 1In D the following are equivalent.

(1) D is a pre-Schreier domain.

(2) TFor all a,b € D* =D ~ {0} and for all x,y € (a} N (b} there
exists d € (a) N (b) such that dlx and dlvy.

(3) For all a,b € D* and for all KyponnsX € (a) N (b) there
exists d € (a) N (b) such that dlxi LI T RS < TN

(4) For all a L € D* and bl,,ﬂn,bmrE ﬂ(ai) there exists

1
d € Fi(ai) such that dﬁbj ] =, .. ,m,
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PROOF. (1) = (2). Let D be pre-Schreier, let a,b € ¥ and
let %,y € (@) N (b). Then ® = x,a = X2b and
y o= y1a = yzb,

Since x,a = X,b we have blx1a and by the pre—Schreier property

1 2
= s = ¢ =
b h1b2 where bTBX] and b2laa Let x, Xib] and a aﬂbzﬂ Then
x,a = Xzb can be written as x;b1a1b2 = xzb which, on cancelling b
from both sides gives xi’a1 = X, Since a1b2 = a we have a,b|a1b

and using the walue of %, we have that a1b|x" Now consider

= . Usi = ' = = .
Y42 yzb Using a a1b2 and b b1b2 we have y1a1b2 yzb]b2

Cancelling b2 from both sides we get Y3y = yzb], So that b1|y1a1

and by the pre—Schreler property b1 = b3b4 where baly1 and b4|a1n

Writing vy T y%b3 and a; = a%b4 we can express y,a, = y2b1 as

b, = y2b1. Cancelling b1 = b3b4 from both sides we get

o1 . . o = = wlath = P [ o
Vo Yidq- This gives ¥ yzb y]alb yqa- Now as y1|jy1 we get
alaib. That is a,bia%b and a;bly, But as a%la1 we have a'blx also.

1
So we have d = a%b € (a) N (b) such that dlx and dly.

(2) = (1). Let albc. Then as bc,ab € (a) N (b) there exists

x € (a) N (b) such that x|ab and x|be (1)
Now as x € (a) e L (ii)
and as x € (b) x = Xzb v ens (iii) .

Using (i) and (iid) xzﬂa and x2|c.

Mow as lea we have, from xga = xzh, b = x1(a/x2). So

a = Xz(a/xz) where x2°a/x2 €D, a/leb and xzﬂc.

(2) = (3). Let Bysene Xy € (a) N (b). If n = 2 we axe through.

So suppose that n > 2 and suppose that for all X1,»a.,Xnm1€ (a) n (b)

the statement 1s true. Then for Kipeen X € (a) N (b) there

n—1

exists d] £ {(a) N (b) such that d1ixi (i =1,...,0-1). But then

for d,,x_ € (a) N (b) there exists dld, ,% and so dix. (1 = 1ynnnsD)a
1" o 17" 1

(3) = (4). Let bwn

so there 1s d1 € (al) N (az) such that d1lhj s 3= 1sen.,m. Now

..,b_ € N(a,). Then b, € {(a,) N (a,) and
m 1 | 1 2
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bﬂ,n,
the job.

msbm € (du) N (a3) N ,ee., N (an) and induction on n completes

(4 = (2)., Obwvious.

The proof of the equivalence (1) == (2) gives rise to another

characterization of the pre—-Scheier domains.

COROLLARY 1.2. An integral domain D is a pre-Schreier domain if
and only if for all x,y € p* and for all h € (x) N (y) thereexists

k € {(x) N {y) such that kih,xy.

A module M is said to be locally cyclic if every finitely
genervated submodule of M is contained in a cyclic submodule of M.
Thus D is a pre-Schreier domain if and only if every finite
intersection of principal ideals of D is locally cyeclic. It is
routine to check that if M is a locally cyclic D-module then fox a

multiplicative set 8§ of D, Mq is a locally cyclic Ds—modu]_em

COROLLARY 1.3. If D is a pre-Schreiexr domain and S is a multipli-

cative set in D then DS is a pre—Schreier domain.

PROOF. TLet A = Nd,D_ where d, = a./s,, a. € D" and s, € 5.
T L 1 L T 1

S
Then A = (RaiDﬂ = (ﬂ(aj))DS and Fh(ai) is locally cyclic,

22 5
COROLLARY 1.4. An integral domain D is a pre—Schreier domain if
and only if evexy finite intersection of principal fractional

ideals is locally cyclic.

PROOF. The if part is an obvious application of Theorem 1.1,

Tor the only if part let D be pre-Schreier and let M = ﬂ(xi)ﬂ Then

o A A
if x, = a./b. putting b = Ti b, and B, = b,...b,...b_ where b. = 1
i it 1=1 * i 1 i n i
n
we get M = (1/b)( n (aiBi)>"

i=1
Now fl(aiBi) ig locally cyelic and if By €M (L= 1,0n-,m)-
Then =, = yi/b where y. € f}(aiBi)n But then by Theorem 1.1, there

exists d! E(](aiBi) such that d1[yi and clearly
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‘(zj) = (yi/b) E;(d1/b). So we have d = d]/b € M such that
(z)500002) (d).

COROLLARY 1.5 (Cf. Lemma 1 of [13]). For D the following are
equivalent.

(1) D is pre-Schreier.

(2 If b € K then (1,b)w1 is locally cyclic.

(3) The inverse of every finitely genevated fractionmal ideal is

locally ecyclic.

PROOF. The proof follows from the fact that the inverse of
every finitely generated fractional ideal is an intersection of

the inverses of the generators.

The above results give us the tool needed for the promised

characterization of pre-Schreier domains.

THEOREM 1.6. An integral domain D is a pre-Schreier domain

if and only if for all Ayseeend 3 b1’"°"’bm € p* and for all

n
x € D with aibjlx (for all i = 1,...,0 3 j = 1,...,m)}) we have

x = rs where ailr and bj!sn

PROOF. ZLet a,b € p* and let c,d € (a) N (b). Then since each
of a,b divides each of c,d we have ac,ad,bc,bdlcd. Now by the
hypothesis cd = rs where a,blr and c¢,dls = cd/r. Now cled/r and so
reled which gives rld. Further dled/r and so rdled which gives rlec.
Consequently we have ¥ € (a) N (b) such that rlec,d. This by (2) of

Theorem 1.1 proves that D is a pre-Schreier domain.

Conversely suppose that D is a pre—Schreier domain and let
ai’bj € p*, 1f aibjlx (for all i = 1,...,n, j = 1,...,m) then
bjlx/ai,“,,bjlx/an for all j and this gives x/a1,,.,,x/an € ﬂ(bj).
But then by (4) of Theorem 1.1 there exists s € ﬂ(bj) such that
s!x/ain Thus x = (x/s)s where ailx/s and bjls, Now putting x/s=71

we get the result.
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COROLLARY 1.7. The following hold.
(1) A pre-Schreier domain is a *—~domain.
{(2) An integral domain D is a pre—Schreier domain if and only if

. % cnl -
for a,,3, ,b1mb2 € D7, aibjlx implies x rs where ailr and bjls,

PROOT .
(1). We mote that for a.,b. € D, (N(a,)){N(b.)) < N{a.b.)
1773 i i = ii
(L =1,0..,0 3 3= 1,...,m}. Now let x E[](aibj) then by Theorem
1.6, ¥ = ¥s where Ef](ai) and s € f](bj) and so
N (a,b.) @ (NCa. N N(k.)).
i - 1 J

(2). The sufficiency is proved in Theorem §.6 and the neces-—

sity is a special case of the necessity in Theovem 1.6.

Of interest may he the fact that Theorem 1.6, affords a new

characterization of UFD's.

According to Cobm [5] (Th. 5.3) an atom (irreducible element)
in a Schreier domain is a prime and the same conclusion obsviously
holds in a pre-Schreier domain. So if we call an integral domain
atomic when its elements are expressible as products of fimitely

many atoms (each) we have the following corollary.

COROLLARY 1.8. An integral domain D is a UFD if and only if (a)
D is atomic and (b) for all aysd, ;bi’bQ € p* and for all x with

aibjlx we have x = rs where ailr and bjls.

2. A characterization and the origins of the *~domains.

From Theorem 1.6 and Corollary 1.7 it follows that a pre-—
Schreier domain is a *—domain with the special property that if
x € (ﬂ(ai))(ﬂ(bj)) then x = rs where v € ﬂ(ai) and s € f\(bj)a
This special property indeed is the strength of the pre—-Schreler
property. We now proceed to show, indirectly, that a *—~domain is

not mecessarily a pre—Schreier domain. For this purpose we show
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that the *-property is locally characterizable., As usual we call

D locally X if for each maximal ideal M, DM has property X.

THEOREM 2.1. An integral domain D is a *~domain if and only if it

is locally a *~domain.

PROOF. The very definition of a *-domain indicates that if D

is a

is a *-domain and if S is a multiplicative set in D then DS

*-domain. So the condition is necessary.

Conversely let for each maximal ideal M, DM be a *-domain and

let aiﬁbj € D. Then (ﬂ(ai))(ﬂ(bj)) = ﬂ(ﬂ(ai))(ﬂ{bj))DM where M
ranges over all the maximal ideals of D. But since each of D is a

M
*—domain (ﬂ(ai))(ﬂ(bj))DM (ﬂ{ai))DM(ﬂ(bj))DM = ((]aiDM)(ﬂ bjDM)

i

il

N aibjDM = (ﬂ(aibj))DM
and hence (ﬂ(ai))(ﬂ(bj)) = ﬂ(ﬂ(aibj))DM = ﬂ(aibj)ﬂ

Now we have established that a pre-Schreier domain is a
*-dJomain and we know that a GCD-domain is pre-Schreier (cf. [5D).
So by Theorem 2.1 1f D is locally pre-schreier, GCD or Bezout then
it is a *~domain. Because a Prifer domain D has the property that
for each maximal ideal M, DM is a valuation domain we have the

following covrollary.
COROLLARY 2.2. A Priifer domain is a *—domain.

That a *-domain is mot necessarily a pre—Schreier domain
follows from the fact that a Priifer domain which is also a Schreier
dowain is Bezout ([5] (Th. 2.8)) and obviously not every Prifer

domain is Rezout.

NOTE 2.3. It is easy to see that for D the following are equiva-
lent.

(1) D has the *-property.

(2) For all Xiﬂyj € K~ {0} where i = 1,...,nand j = 1,...,m we
hawve (ﬂ(xi))(ﬂ(yj)) = ﬂ(Xin)~
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Combining this note with the rather direct characterization of

*—domains we get the following theorem.

THROREM 2.4. In an integral domain D the following are equivalent.
(1) D is a *~domain.
) Tor all invertible ideals A, ,...,A_ 3B, ..
1? n’ "1’

(na.x(ns,) =NA.B..

L 1 i

PROOF. (2} = (1) 1is obvious because every non-zero principal
fractional ideal is inovertible. So we prove (1) = (2).

Tet D be a *-domain. Then we note that :
(i) DM is a *-domain for every maximal ideal M,
(ii) in a guasi-local domain every invertible ideal is principal,
and
(3iii) 4if A is invertiblethem ADS is invertible for any multipli-

cative set S in D.

Now let Aa,nqa,A B

,...,B_ he invertible ideals of D. Then
n 1 m

1

(NA(NB.) n (((IAi)(fEBj))DM (where M ranges over maximal
L 3

ideals)

0

nn AiDM) {n BjHM}

i

n (f\AiDMBjDM)

(since AiDM.”BjDM are principal and DM are *-domains)

=N (ﬂAiEj)DM = ﬂAi}aj .

Now as a Prifer domain is a *-domain it satisfies (2) of
Theorem 2.4, Further, because in a Prifer domain every fimitely
generated ideal is invertible we can say that in a Priifer doma in
for finitely generated fractional ideals A1,nAnmAn; B1,nn_,B

(NA(NB.) = NAB. -
L 3 13

m

Conversely if for all finitely generated fractional ideals

A.,B.of D, (NAD(NB.} = NA.B. (i <=n, 3 <m) then by {c,) of
i 3 x N L] e - 1
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Theorem 25.2 of [10], D is a Prufer domain. This gives us the

following corollary.

COROLLARY 2.5. An integral domain D is a Priifer domain if and only
if for all finitely generated fractional ideals

A, ,B. (1<i<mn,1=<j<m, (NAJ(NB,) = NAB. .
1773 -7 - - - i i i3
This corollary gives us a rather interesting result.

CORGLLARY 2.6. An integral domain D is a Bezout domain if and only
if for all finitely generated integral ideals Ai ’Bj (1 <1i<2;
P<j<2) x Ef]AiBj implies that x = rs where r € 0 A, and

s € NB..
3

PROOF. Suppose that D is Bezout. Then each of Ai ,Bj is
principal and as a Bezout domain is also pre-Schreier the result
fallows from Theorem 1.6. Conversely suppose that the condi-
fion holds. As it also holds for principal ideals we have from (2)
of Corollary 1.7, that D is a preHSchreier domain. Now we show
that in general the condition implies that (f]Ai)(f]Bj) = lWAiBjn
By (c1) of 25.2 of [19J this is sufficlent for D to be a Prifer

domain, and this will complete the proof.
T
c = o
Let x € ((]Ai)(f]Bj)h Then x kiiukvk where uy €NA; and
3 R . - . .
Ve &INBj. Consequently U € Ai for all 1 and vy € Bj for all j.

Thus u, v, € AiBj for all i,j and from this we conclude that

k' k
x =% uv, €N A.B. and that (NAD{(NB.Y © N A.B.. As the reverse
k'k 1] i i - i3

inpclusion is given by the condition, we have the equality.

REMARK 2.7. (The origin of the *-domains).

A primal element is said to be completely primal if each of

its factors is primal. Coha [5] (Lemma 2.5) shows that the product
of two completely primal elements is completely primal. From his

work (loc cit) ome cam easily derive the result that a multiplica—
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tive set generated by completely primal elements has the Riesz

refinement property, that is if x = ag...a, = b b11 where each of

g
a; ’bj is completely primal then the two factorizations of x have a

common refinement i. there are elements Cij such that

e.
m n
a. = Mec.. , b, = Te...
1] 3 =1 ]

3=1 i
From the above observations it follows that D is a pre-Schreier
domain if and only if its group of divisibility G(D) is an abelian

Riesz group (an abelian directed P.0. group whose elements satisfy

the above mentioned refinement property). The reader may consult

Fuchs {9] for the general definition and various characterizations
of a Riesz group. We mote that once the connection of pre—Schreier
domains and Riesz groups is clear, one can easily tramsiate
various characterizations of Riesz groups to those of pre-Schreier
domains. We further nmote that (2) and (4) of Theovrem 1.1 are

what Fuchs (loc cit) calls the (2,2) and the (m,n) interpolation
properties respectively. In the p.o. group terminology cur state~
ments are made for positive elements only and hence are slightly
stronger (Corollary 1.4 incidemrally is a true restatement of the
(m,n) interpolation property mentioned by Fuchs (loc cit). From
Corollary 1.7 it follows that D is a pre—~Schreier domain if and
only if it is a *-domain with the property that for

x € (ﬂ(ai))(ﬂ bj)), x = rs where v € fl(ai) and s € [1(bj)A This
tooc is a translation of a known characterization of Riesz groups.
Yer we arrive at this tramslation by bridging a gap. To see this
gap we pote that if G(D) is the group of divisibility of D and if

KypanenX € G(D) then the set of all upper bounds of {x1,a",,xn}

177
which 1is U(x1,»..,Xn) ={ceccm|t > xi} is represented in ring-
theoretic terms by (]xiD, By Theorem 2.2 (part (3)) of [QJ, G(D)
is a Riesz group if and only if for all ByonenaXy 3 yimﬂn_,ynEZG(D)
1]
U(X1,n..,xn)U(y1”nm.,ym) = U(X1Y1’"""Xiyj""’xnym)” We note that
the product here means AB = {ab la € A and b € B}. On the other

hand the product of two ideals HK is given by
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K = { T hiki| hi € H and ki € K}. That is if H and K are ideals
of D and if x € HK it is not necessary that x = rs where r £ H and
s € K. So (flxiD)(f]ij) = {1xiij is not sufficient, ring
theoretically, to imply that D is a pre-Schreier domain. Thus the
difference between the definitions of products of subsystems is
solely responsible for the motion of *~domains.

Tt would be unfair not to mentiom at this peint the beautiful
paper [3] which discusses integral domains D for any two ideals
4,8 of which x € AB implies that x = ab where a € A and b € B. In
[3] these integral domains are called condensed. One may suspect
rhat a condensed domain is a special case of a pre-Schreier domain,
but this is not so. The reason is that being a pre—Schreier domain
involves two conditions whereas being a condensed domain involves
only ome. To elabovate om this point we take up an example of a
e

condensed domain and show that it does mot have the *~property.

EXAMPLE 2.8 (Cf. [3] Example 2.3). Tet F be a field, let R be the
ring of those power series (over V) whose coefficient of ¥ is

. 22 3 .
zero. Then according te £31 R ( = FL{x".,Xx711) is a condensed
domain. We show that R is not a *—domain and hence is not a pre-

Schreier domain.

B .
et A= ED N &) and B = &) N &Y. Then & = & %x%) and

B = (X6 ,X7). This follows from the fact that every mon—primcipal

ideal of R is of the type (Xn }Xm+“) n > 2 (Cf. [4] Example 1{a)
p. 545).
so 48 = (&) 1 &M@ n @ = @, 56, 1)
- (Xil ,XiE ,Xi3) - (K119‘X32)"
Now if we put X2 = a, ¥° = b, %3 = ¢ and 3% = 4 we have
AB = ({a) N (b)) ({c) N (d)) whereas

il

(ac) A (ad) n (be) 0 (bd) = G2 n @) n & n &)

(Xﬁ)(](X7) = (Xg ,X‘G)"

C

i

Thus AB = C and so R is not a *—domain.
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The readers who are not interested im number crunching of the
sort done above may take the following alternmative voute. Obvious—
iy R = F[[Xz ,X3]] is poetherian and according to [2]1 (Cor. 3.9)

a noetherian domain which satisfies * is locally factorial. The

result then follows from the fact that R is not factorial.

The above example, as the referee has pointed out, cam be used
to draw an interesting conclusion. We first note, by way of prepa-
ration, that all the non—zero ideals of F[[K2 9H3]] are diwvisorial
(Cf£. [10] Example 11, p. 431). So, according to Example 2.8, there
may exist in some integral domain D elements ai,gbj such that

{ N (ai))( N (bj))) is diwvisorial without being egual to (aib,)n
kS J »* iﬂj J
In other woxds, for D to a ~—domain it is mecessary that products

of the type (N (ai)}( N (b,}) be divisorial, but it is not suffi-

i ]
clent. In the next section {(Corollary 3.3) we shall indicate the

situation in which this condition 1s alse sufficient to make D a

* -
~domain.

5. The "-property and some generalizations of Prifer domains.

An integral domein D is sald to be essential if it bas a family

{Pi}iﬁzI of prime ideals such that D, is a2 wvaluation domain for
€ P.
i

each 1 and D =N DP . So an essential dowain 1s a generalization
i
of a Priifer domaim in that,like a Prifer domaln 1t is an intersec—
tion of wvaluation overrings (rings between D and K) which ave loca-
lizations of it. PVMD's (introduced below) are a special case of
essential domains and hemce are in the class of generalizatioms of
Prifer domains.
The aim of this section is to study how neavr to being
*~domains are the essential domains and the PVMD's. We also study

P . . . ES .
the conditions undexr which these integral domains are "—domains.

To introduce PVMD's and to introduce some of the motions

we shall use in this connection we recall some of the related
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definitions and results from ng] (section 32 and 34 mainly). Let
F(D) be the set of (nom—zero) fractional ideals of D. A mapping
A A¥ of F(D) into itself is called a *~gperation on D if for all

a e X ~ {0} and for all A,B € F(D)

(1) (@ = (2.
(ii) A CAY and A CB implies A* C B*.
(1ii) (aM*
From this defimition it follows that for A € ¥(D) if F\A. € F(

then (mAj:L) =N A and if T A, € F(D) then (z A= (;, A*>*
1 1

A fractional ideal is called a *-ideal if A* = A and a *~jdeal
of finite type if A = B* for B finitely generated. Further, if
{D.}m is a family of overrings of D such that D = M D, then the
map A'* n AD is a —operation which is said to be induced by
{D }. The operatlon A (A ) -t A, is apother *—operatiom called
the v-operation. 1t has the special property that for any *-gperation’,
AT C A and A’ C B’ implies that A C B and hence A' = B' implies
Av = B . An integral domain D is called a Priifer v-multiplication
demaln if the set H(D) of v—ideals of finite type forms a group
under the v-multiplication (AB)v = (AVB)V = (AVBV)V, According to
Griffin [111, a PVMD is essential. Finally if every v-ideal of

finite type of D is invertible then D ig called a geperalized

GCD-domain (C£. [11).

The result that we need to prove is that if D is essential
domain (( ﬂ(ai))( ﬂ(bj)))v = ﬁ(a b } and we shall prove it via
a more general theorem which gives a method of translating results
known for Priifer domains to results for essential domains. Fox
this result we prepare as follows. If the fractional ideals
AIRQMQ,A are combined by usual operations on fractional ideals we
call a particular such combination an expression on the ideals and
denote it by F(Alm..,gAm)n We call an expression F(Al,“ah,An)

extendable if for each multiplicative set § of D,
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F(Alyn,ﬁ,An)Ds = F(ARDS,AHH,AHDS)A Finally we say that

F(Al’””"’Aq) = G(AlgﬁnngAj) is an identity on D if for all
iis L T

A}gmnnﬂAn € F(D) the given equation holds.

THEQOREM 3.1. Let F(AlﬁannyAn) and G(AI*”””An) be extendable
expressions om any essential domain D and let
F(An,anayAn) = G(Al,..ﬂ,An) be an identity om any Priifer domain D'

Then (F (A& ,nyAn))v = (G(AﬂQMHa,Am))V is ap identity ob any essen—

177
tial domain D.

PROOF. Let D be essential and let {Pi}itéI be a fawily of

prime ideals of D such that D, are all wvaluation domains and

P.
3.
D = ﬂDP . Let w be the *—operation induced by {DP }. Then
i i
{F(Al, onn 5An))w = ﬂF(Alw " e QAH)DP_ML
i
= F{A, D ,-na,AD_ ) (since F 1is extendable)
i Pi ) Pi
zﬁG(AlDPiMM,AnDPi) (since DPi are all Prifer)
= ﬂG{AlgomHgAn}DP (since G is extendable)
i

= (G(Al,ﬁnn,An))w .
But this means that (F(AIQQANQAH))V = (G(AlgmwgwAn))va Sipce F = G

is an identity over Priifer domains we have the result.

The following corollary indicates some applications of this
theoxrem.
COROLLARY 3.2. 1In an essential domain the following hold.

(1) For all finitely generated fractiomal ideals Ai ’Bj

(1<i<nand 1 <j=<m ((NADCD Bj))v :(ﬂAiBj)va
(ii) For all principal fractiomal ideals (ai)a,n,y(an),
(b))aaea (b)) 5 (LN @I BIN, = b

(iii) For all finitely generated fractional ideals Ai”

t<i<xt (A =(NaD_.
=~ 2= i 7 i
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(i) TFor all integxal ideals A, B, C
an @ +C)) = (ANB +ANC)
kY w
€3] For all integral ideals A, B
((a + BYA N BY = (BB .
v v
(vi) For all integral ideals A, B, €
(a(® ncH_ = a8 N AC) .
v v

(vii) For all integral jdeals A, B, € and for C finitely

generated

((a + B):-C)v = (A:C + B:C)

PROOF. The proofs of (i) and (ii) follow from Theorem 3.1, via
Corollary 2.5. The proof of (i1i) can be comstructed using 15.5
part (a) of [lgj and the above theorem, while for (iv) ~ (vii)
25.2 of [EQJ can be used in addition to the above theorem.

Tt would be interesting fo see if any of the expressions in

Corollaxry 3.2 actually characterize essential domalns.

In addition to the connection Corollary 3.2 establishes
between Prifer and essential domains it leads o the precise

" - . - . - £ »
conditions under which an essential domain 18 4 ~doma L.

COROLLARY 3.3. Ap essential domain is a *_domain if and omly if
the product of each pair f](ai), K1(bj)g of finite inter—sectioms

of principal fractional ideals, is a v—ideal.

Now as the PVMD's are essential, the results proved for essen”
rial domains also hold for PVMD's. Vet in case of PVMD 's we can

go still deeper.

COROLLARY 3.4. Let D be a PVMD. Then the following are equivalent.

1) D is locally a GCD~domain.

(2) D is a *-domain.



D
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(3 In D the product of every two v-ideals of finite type is
again a v-ideal of finite type.

(4) ¥or every two elements a,b € D*a (2) N (b) is invertible.
(5) Yor every pair of elements f,g € wlx] - {0}

(A, )M1=:(A.A )—ﬁ = A:] A—1 where A_ denotes the ideal generated
fg fg r 23 £
by the coefficients of f.

(6) D is a generalized GCD—domalns.

PROOF .
(1} = (2) 1is obviocus and (2) = (3) follows from Corallary 3.3,
and the fact that D is a PVMD.

(3) = (4). Let a,b be any two eclements of D. By (3).
(a,b)v((a) n (b)) is a v—ideal.

That is

(agb)v((a)fW(b)) = ((a’b)v((a)r](b)))v"
But as D is a PVMD((aEb)V((a)F1(b)))v = (ab) which gives
(a,b)v((a)f](b)) = (ab) which means that (a) N (b) is invertible.

(4) = (1). Obvious.

(2) = (5). We recall that the *-property can be stated for

principal fractional ideals. Now

-1 _ ~1
(Ang) = ((aﬁgn,.,an)(b1,q,habm))

where a; bj are coefficients of £ and g respectively. Thus

.—-] _ —
(nnhgaibjon»n) = Fl(aibj)

(N /e () = al's ! Gy ).

1 =

i

(Ang) f (Mai . i/bj)

]

Moreover, as a PVMD is integrally closed (A, ) = (AA D (ce.[10],
fg v £g’v ——

-1 i 1 -1

Prop. 34.8) and so (Afg) = (Afﬂg}— = (Af)M (s 2

(5) = (2). As we can select f and g such that

A, = (1/31,.~~,ﬂ/an) and Ag = (R/bi,nn,,1/bm) we can use (5)

x
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to derive (2). Fimally (6) = (4) is a result of [1] and this

completes the proof of the corollaxy.

REMARK 3.5. Corollary 3.4 can be used to prove that a semi~quasi-
local PVMD with the *-property is a GCD-domain. Om the more practi-
cal side a semi-quasi—~local Krull domain is a UFD if and only if it

is a *-domain.

Tt is of course well known that a PVMD is a GCD—domain if and
only if it is a Schreier domain. Yet most proofs of this state-
ment are imdirect or imvolved. Theorem 1.1, affords a direct proof

and in the following we indicate the procedure.

THEOREM 3.6. Let D be a pre-Schreier domain and let a],.@ﬁpanéiD*,

Then the following are equivalent.

(&) f?(ai) is principal.

(2) f]{ai) is invertible.

(3) Fl(ai) is finitely generated.

(43 f\(ai) is a v~ideal of finite type.

PROOF. The implications (1) = (2) = (3) = (4) are obvious.
So we prove (&) = (1). For this we note that ﬂ(ai) is a v—ideal
for any D. If (](ai) is of finite type them there exist X],Nnﬁ,xr

such that (x ’Xr)v = Fl(ai), But by (4) of Theovem 1.1 there

12
exists d € ﬂ(ai) such that (xt,ﬂaa,xr) [ (d) = ﬂ(ai), RBut then

N(a.) = (x,,...,x_) < (d) =nla.}.
i i v — = i

Now because in a PVMD r](ai) is always of finite type we
conclude that a PVMD is a GCD-domain if and only if it is Schreier.
In fact a more general statement cam be made and I am thankful to

the referee for it.

COROLLARY 3.7. Let D be a pre-Schreier domain. Let A be a v—ideal
of finite type with A_‘E also of finite type. Then A is primcipal.

Hence Pic(D)} = O.
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-1 -1 -1
PROOF . t = pe e . = =
¥, Let A (b1, ’bn)v Then A AV (b] N...n (bn ).
By Theorem 3.6, A is principal. The second statement is obvious
once we note that Pic(D) = Tnv (D) /P(D) where Inv(D) denotes the
group of invertible ideals and P(D) the group of mop—zexro princir

pal fractional ideals.

Anderson et al [2] have introduced an interesting variation of
the *—property. They show that a noetherian integral domain D is
locally a UFD if and only if it satisfies : (*f) for all
a,b,c,d € D¥, ((a)N () ()N (d)) = (ac) N (ad) N (bc) N (bd).

This gives rise to the question , "Does (%) dmply (*) 7" This
question looks plausible in that using part (2) of Coxollary 1.7
we can show that D is a pre—Schreier domain if and only if it
satisfies (¥*) and x € ((a)y N (b)) ({e) N (d)) implies that x = rs
where v € (a) N (b) and s € (c) N (d). So for a pre-Schreier domain
(**) is equivalent to (*). There is apcther area where the equi-—
yalencecan be easily seen. We note that according to Griffin [12]
(Prop. 17), every v—ideal of finite type is a v—ideal of type 2

in 2 ring of Krull type. Here a ring of Krull type D is a PVMD

with a family of prime ideals {Pi}iEII such that D, are all
i
valuation domains and each mon—zero non-unit of D is in at most a

finite number of Pi. So in a ring of Krull type

1

n(ap = (1/31,..",1/%)"1 - (G )Tt = ANy These

observations give rise to the following corollary.

COROLLARY 3.8. Let D be a PVMD in which every v-ideal of finite
type is a v-ideal of type Etwo. Then the following are equivalent
for D.

(1) D is locally a GCD~domaln.,

(2) D is a *-domain.

(3) In D the product of every two v-ideals of finite type is

again a v—ideal.
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(4) For every two elements a,b € D*, {a) N {b) is invertible.

(5) TFor every pair of elements f,g € K[X] - {0}

,_i , - — -

e et =Tl
g £

o
&

(AfF

=3

(6) T ois a (*)-domain.
7 For every pair of limear polynomials f,g € kIx] - {0}

-1 S T
(Afg} = (Ang) Ag ]

e
g
Tndeed there are some doubts too. In the above mentioned
situations where (¥*%) is equivalent to (*) there are some strin-
gent accompanying conditions as well. For exzample there is
noetherian condition under which (**} forces the noetherian domain
to be a Krull domain, as shown in [2], for which (%) is equiva-—
lent to (*) by Corollary 3.8. For pre—Schreier domains (k%) 13
coupled with something that actually forces the pre-Schreier pro-
perty into being. Finally, being a ring of Krull type or satisfying
the condition of Corollary 3.8 is in itself a stringent condition ;
as it is not necessary that in a PVMD every v—ideal of finite type
should be of type two ... mot even in a Prifer domain (CE£. [14]

and references theve).

We close this sectiom with another observation due to the

referee.

PROPOSTTION 3.9, Let D be a *~domain. Let A be a v—ideal of finite

-1 . .. . .
type such that A is also of finite type. Then A 1is invertible.

1

- - -1
PROQF. Let A = (cigpﬂm,c Yy so that A = (e )N ... 10 {c_ ).
m’ v m

Let A”i = (b,,...,b ) _so that A = A = b,
1 FURY W

1 _ -1 -1

¥ = {1(bi Cj ¥

). Hence AAf] 2 R and

= ThnL e heeThnn e
1 s} i m
But each c¢. € (bT])m That is R < F}(bflch
1 L - 13

and this gives AAM] = R.
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COROLLARY 3.10. A *—domain D is a generalized GCD~domain 1f and
cnly if for every fimitely generated non-zero ideal A of D, A—1 is

of finite type.

PROOF. 1If D is a generalized GCD-dowain then it is a *-domain
and a PYMD, So, for every finitely generated non-zero ideal A, AM1
is of finite type.

Conversely, using the fact that A—1 = A"1 we conclude that
v

every finite type v—ideal has the property that AMi is of finite
type. But then by Proposition 3.9, every v-ideal of finite type is

iavertible. Thus D is a PVMD and Corollary 3.4 applies.

4. The *-property and the pseudo valuation domains.

Recall that a quasi—local integral domain {(p,M), with the

maximal ideal M, is a pseudo valuation domain (PVD) if for all

sdeals A, B of D we have A © B or BM = AM. Clearly if (®,M) is
a PYD then {mM | m € M} is a chain undev inclusion. Clearly if D
is a PVD which is mot a valuation domain then there exists at
least one pair of elements a,b € D with aD and bD incomparable.
But theun aM < bM ox bM < aM. We assume that aM < bM. Then

aD D ab N bD = aM. Since aM is a maximal submodule we have

aD N bD = aM. Thus we have the following result.

PROPOSITION &4.1. TLet (D,M) be a PVD. Then for any two incompara—
ble principal ideals aD,bD of D, M = aD:bD or M = bD » aD.

The following result follows immediately fyom Propesition 4. 1.

COROLLAEY 4.2. If (D,M) is a PVD which is mot a valuation domain

then

(i) M is a v-ideal.

(ii) M is finitely generated if apmd only if D is a finite
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conductor domain (i.e. the intersection of every two principal

jdeals is finitely generated).

(iii) For all a,b € D one of the following holds :za |b, bl a,
aDNbD = aM or aDNbD = bM,

The proofs are obvious.

COROLLARY 4.3, Let (D,M) be a PVD then the following are equiva-—

Lent.

(i) M is a locally cyclic D-module.
(ii) For all a,b €D ; aDbD is locally cyclic.

(iii) D is a pre-Schreier domain.

PROOTF .

(i) = (ii). According to (iii) of Corollary 4.2 either
aDNBD = xD or aDNbD = xM where x =a or x =h. If ab N bD = xD
then aDNbD is cyclic and hence locally cyclie. Further, for x €D
M is locally cyclic if and only if M is. So if M is locally

cyelic then so is aDNbD = xM.
(ii) = (iii). This follows from (3) of Theorem 1.1

(iii) = (i). If D is a valuation domain then clearly M is
locally cyclic ; as every finitely generated jdeal is principal in
a valuation domain. If D is not a valuation domain then by FPropo-
sitionm 4.1, M = (a): (b) for some a,b € D. But (a) : (b) is

locally cyclic because of the pre-Schreier property.

We now use these results to show that in a PVD which is not a

valuation domain the *—property is equivalent to the pre—Schreier
property and to many other stronger properties.

THEOREM 4.4. Let (D,M) be a PVD which is not a valuation domain.

Then the following are equivalent @

(i) D is a pre-Schreier domain.



PRE-SCHREIER DOMAILNS 1917

(ii) D is a *-domain.
(iii) ¥ = M.
(iw) M is a flat D-module.

(v) M is a loecally cyclic D-module.

(vi) D is a (**)-domain.

PROOF .
(i) = (ii). This is (1) of Coxollary 1.7

(ii) = (iii). Because D is mot a valuation domain, there
exist a and b in D such that aD N bD = aM (Proposition 4,1). Now by
(@ n G2 = %0 @b) N (ap) 1 6
a{{a) 0 (b)) Nh{(a)n ()}

a2Mf]baM = a(aMNbM) = alaM) = azM

1

the *-property azMZ

1

i

and from this it follows that M2 = M,
(iii) = (iv). 1t follows from Theorem 2.3 of Dobbs [zjn
(iv) = (v). Follows from Theorem 12 of [6].

That (v) = (i) follows from Corollary 4.3 and finally

(ii) = (vi) and (vi) = {(iii) are obvious.

Thus in a PVD which is not a valuation domain the *-propexrty

is equivalent also to the Sylvester property of [EJ.

In section 3 we showed that in a quasi local PVMD the
*-property is equivalent to the pre~Schreier property. (Note that
5 PVMD is a GCD-domain if and only if it is Schreier). The results
of this section lead to examples of non—PVMD's in which the
*-property is equivalent to the pre-Schreier property. Indeed we
can go a step further and produce a simple and crystal cleax

example of a pre-Schreier domain, which is not Schreier.

EXAMPLE 4.5. Let § = {x" | r, rational > 0}. Form the algebra R[S]

over the field R of reals. It is easy fo see that R[S] is a Bezout
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domain (every finitely generated ideal is principal). Let
p=1{f € R[S]| £ has zero constant rerm}. Cleaxrly P 1s a prime
ideal and clearly T = r[s] - P is the set of elements with non

Zerc constant terms.

it is easy Lo see that R[S] = R+ P and becauge it is a Bezout

il

domain we conclude that (R[S])T Rn%(P)T =V is a valuation
domain with maxzimal ideal (P)Th 1t is well known that then

D= Qi—(P)T, where Q is the set of vationals, is a FVD (Cf. e.g.
[8] Proposition 4.9). Now because of the definition of §,

(P)é = (P)Tﬁ Thus by Theorem Lob Q-F(P)T is a prEMSchreier

domain. That QA#(P)T is not integrally closed in obvious.

REMARKS 4.6 .

4D Example 4.5 is not the first ever example of 2 strictly pre-
Schreier domain (Cf. [13] and rhe references there}, nor is it a
novel cne j; yet it can be put to a novel use. We use it Lo give a
concrete example of the fact that if D is strictly pre~Schreier and
i€ Y is an indeterminate over D then DL[Y] is mot pre—Schreier. For
thig let D = Q+ (P)g and comsider in DIY] the produck

o7 x5y + ¥ VI XY - X). Now

2r.2 ‘§2r

P T Ky - XD V2 AT - X = 20 - X s x -

but we canmot split 2r = p+4 in any possible way to get

| vz xTy + X" and X7 | JT x5 ¥ - x*. The obvious comclusion is

that for mo positive rational p is %P primal in plyl.

(2 it is well known that a lattice ordered group is torsion
free and Fuchs [91 (p. 9 Example 4), points ouk that in a Riezs
group there may be elements of finite order. Example 4.5 cam be

used to demonstrate this fact conveniently as follows.

Let B = R + P, as in Example 4.5. Then as D is a pre-Schreier

domain its group of divisibility
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cm) = {(x/y)D | x,y €D - {0}} wunder multiplication defined
by (x/v)D . (u/v)D = {(xu/yv)D and order defined by (x/y)D < {(r/s)D

if (x/e)D < (x/¥)D, is a Riesz group. (Here D is the identity) .

Now let a = V2 X and b = X. Then
((a/b)D)z = (2 XZIXA)D = 9D = D. That is (a/b)D is an element of

order 2.

Tn fact it is easy to see that G(D) in this case is a Riesz
group in which for every integer n there is an element (u/v)D in

G(D) such: that ((u/v)D)n =D,
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