T-SPLITTING MULTIPlicative SETS OF IDEALS IN INTEGRAL DOMAINS

GYU WHAN CHANG, TIBERIU DUMITRESCU, AND MUHAMMAD ZAFRULLAH

Abstract. Let D be an integral domain. We study those multiplicative sets of ideals S of D with the property that every nonzero principal ideal dD of D can be written as $dD = (AB)_t$ with A, B ideals of D such that A contains some ideal in S and $(C + B)_t = D$ for each $C \in S$.

Let D be an integral domain with quotient field K and let $F(D)$ be the set of nonzero fractional ideals of D. Clearly, for $A \in F(D)$, $A^{-1} = D :_KA$ is again in $F(D)$. Recall that a mapping $A \mapsto A^*$ of $F(D)$ into itself is called a star operation on D if the following conditions hold for all $a \in K \setminus \{0\}$ and $A, B \in F(D)$: (1) $(aD)^* = aD$, $(aA)^* = aA^*$, (2) $A \subseteq A^*$, if $A \subseteq B$, then $A^* \subseteq B^*$, and (3) $(A^*)^* = A^*$. A is a $*$-ideal if $A = A^*$. For standard material about star operations, see sections 32 and 34 of [9]. Three well-known examples of star operations are the maps $A \mapsto A$ (the d-operation), $A \mapsto A_v$ (the v-operation) and $A \mapsto A_t$ (the t-operation), where $A_v = (A^{-1})^{-1}$ and $A_t = \cup \{B_v | 0 \neq B \subseteq A$ is finitely generated$\}$. Clearly, $A_v = A_t$ if A is finitely generated. An ideal $A \in F(D)$ is t-invertible if $(AA^{-1})_t = D$. In this case A has finite type, that is, $A_t = \{x_1, \ldots, x_n\}_t$ for some $x_1, \ldots, x_n \in A$. D is called a Prüfer v-multiplication domain (PVMD), if every finitely generated ideal $A \in F(D)$ is t-invertible. The t-class group $Cl_t(D)$ of D is the group of t-invertible fractional t-ideals, under the product $A * B = (AB)_t$, modulo its subgroup of principal fractional ideals.

The following concept was introduced and studied in [3]. A multiplicative subset S of D is said to be t-splitting, if for each $d \in D \setminus \{0\}$, $dD = (AB)_t$ for some ideals A, B of D with $A_t \cap S \neq \emptyset$ and $(B, s)_t = D$ for each $s \in S$. The main result of [3] asserts that $D + XD_S[X]$ is a PVMD if and only if D is a PVMD and S is a t-splitting set of D, where $D + XD_S[X]$ is the subring of $DS[X]$ consisting of those $f \in DS[X]$ with constant term in D. The t-splitting sets are investigated further in [6].

The main purpose of this note is to extend certain results from [3] and [6] to the case of multiplicative sets of ideals. We aim to show that by using the notion of t-splitting sets of ideals, we can explain a number of multiplicative phenomena that cannot be explained otherwise or are hard to explain. The main concept we use is that of a t-splitting set of ideals S of a domain D (see Definition 1). We show that many results from [3] and [6] can be stated for t-splitting sets of ideals. A characterization of S being t-splitting using the S-transform of D (see definition below) is given in Proposition 5. In Theorem 12, we show that the presence of a t-splitting set of ideals induces a natural cardinal product decomposition of the ordered monoid of fractional t-ideals of D (with the t-product and ordered by reverse
inclusion). Restricting to t-prime ideals, this decomposition gives a well-behaved partition of the set of t-prime (resp. t-maximal) ideals of \(D \) (see Remark 14 and Corollary 15). Some applications for PVMDs and Krull domains are given in Propositions 16 and 17. The final part of this note contains several Nagata-type theorems.

Throughout this note, all rings are integral domains. All undefined terminology is standard as in [9]. Let \(D \) be an integral domain with quotient field \(K \), \(S \) a multiplicative set of ideals of \(D \) and \(D_S = \{ x \in K \mid xA \subseteq D \text{ for some } A \in S \} \) the \(S \)-transform of \(D \) (see [4] for basic properties of this construction). If \(I \) is an ideal of \(D \), then \(I_S = \{ x \in K \mid xA \subseteq I \text{ for some } A \in S \} \) is an ideal of \(D_S \) containing \(I \). Denote by \(S^\perp \) the set of all ideals \(B \) of \(D \) with \((A + B)_t = D \) for all \(A \in S \). Note that \(S^\perp \) is also a multiplicative set of ideals. Call it the \(t \)-complement of \(S \). Consider also, the multiplicative set of ideals \(sp(S) \supseteq S \) consisting of all ideals \(C \) of \(D \) with \(C_t \supseteq A \) for some \(A \in S \). It is easy to see that \(sp(sp(S)) = sp(S) \), \(sp(S^\perp) = S^\perp \) and \(D_S = D_{sp(S)} \).

We begin by providing a formal definition of the notion of \(t \)-splitting sets of ideals.

Definition 1. Let \(S \) be a multiplicative set of ideals of \(D \) and \(S^\perp \) its \(t \)-complement. We call \(S \) a \(t \)-splitting set of ideals if every nonzero principal ideal \(dD \) of \(D \) can be written as \(dD = (AB)_t \) with \(A \in sp(S) \) and \(B \in S^\perp \).

Clearly, \(S \) is \(t \)-splitting if and only if \(sp(S) \) is \(t \)-splitting. If \(S \subseteq D \) is a saturated multiplicative set of \(D \) and \(S = \{ sD \mid s \in S \} \), then \(S \) is \(t \)-splitting in the sense of [3] if and only if \(S \) is \(t \)-splitting in our sense.

In a Krull domain \(E \), every nonzero proper principal ideal can be (uniquely) written as a \(t \)-product of height-one primes [7, Theorem 3.12], so every set of height-one prime ideals of \(E \) generates a \(t \)-splitting set (see also Proposition 17). Some easy consequences of Definition 1 are given below.

Proposition 2. If \(S \) is a \(t \)-splitting set of ideals of \(D \), then the following assertions hold.

(a) \(S^\perp \) is \(t \)-splitting.

(b) For every \(C \in S \), \(C_t \) contains some \(t \)-invertible ideal of \(sp(S) \).

(c) The set \(S_t \) of all \(t \)-invertible ideals in \(sp(S) \) is a \(t \)-splitting set with \(t \)-complement \(S^\perp \) and \(sp(S_t) = sp(S) \).

Proof. (a) is clear from Definition 1. For (b) and (c), note that when \(0 \neq d \in C \in S \) and \(dD = (AB)_t \) with \(A \in sp(S) \) and \(B \in S^\perp \), it follows that \(A \) is \(t \)-invertible and \(C_t \supseteq A \). Indeed, as \(C \in S \) and \(B \in S^\perp \), we get \((C + B)_t = D \), so \(A \subseteq A_t = (A(C + B))_t \subseteq C_t \). So, (b) follows, and, consequently, \(sp(S_t) \supseteq sp(S) \). Thus (c) follows from the remarks accompanying Definition 1. \(\Box \)

In [8], a multiplicative set of ideals \(S \) of \(D \) is said to be \(v \)-finite if for each \(A \in S \), \(A_t \) contains some \(v \)-finite ideal \(J \in sp(S) \). Since an invertible \(t \)-ideal is \(v \)-finite, part (b) of the preceding result shows that a \(t \)-splitting set is \(v \)-finite. Our next result shows that, when \(S \) is \(t \)-splitting, the \(t \)-product decomposition imposed in Definition 1 for the principal ideals extends to all \(t \)-ideals (thus extending [3, Lemma 4.6]).

Proposition 3. Let \(S \) be a \(t \)-splitting set of ideals of \(D \). Then for every nonzero ideal \(I \) of \(D \), \(I_t \) can be written as \(I_t = (AB)_t \) with \(A \in sp(S) \) and \(B \in S^\perp \).
This decomposition is unique in the following sense. If \((AB)_t = (A'B')_t\) with \(A, A' \in \text{sp}(S)\) and \(B, B' \in S^\perp\), then \(A_t = A'_t\) and \(B_t = B'_t\). In particular, if \(I_t\) is of finite type, then we can choose \(A\) and \(B\) to be finite type \(t\)-ideals.

Proof. Let \(I\) be a nonzero ideal of \(D\) and set \(J = I \setminus \{0\}\). As \(S\) is a \(t\)-splitting set, for each \(j \in J\), we can write \(jD = (A_jB_j)_t\) with \(A_j \in \text{sp}(S)\) and \(B_j \in S^\perp\). Then \(I_t = (\bigcup jD)_t = (\bigcup (A_jB_j))_t = (\bigcup A_jB_j)_t\). But \((\bigcup A_jB_j)_t = ((j \cap h)A_h)_t\).

Indeed, the inclusion \(\subseteq\) is clear. For \(\supseteq\), let \(h, i \in J\) with \(h \neq i\). Then \((A_i + B_h)_t = D, sp A_hB_i \subseteq (A_hB_i(A_i + B_h))_t \subseteq (\bigcup A_jB_j)_t\). Finally, note that \(j A_j \in \text{sp}(S)\) and \(j B_j \in S^\perp\).

For the uniqueness part, assume that \((AB)_t = (A'B')_t\) with \(A, A' \in \text{sp}(S)\) and \(B, B' \in S^\perp\). Since \((A + B')_t = (A' + B)_t = D, we get \(A_t = (A + B')_t = (A' + B)_t = (AA' + (AB)_t)_t = (A'A' + (A'B')_t)_t = (A + B')A'_t = A'_t\). Similarly, \(B_t = B'_t\).

The “in particular” part was proved on the way. \(\Box\)

As a consequence, \(S^{\perp \perp} = \text{sp}(S)\). Indeed, let \(C\) be in the \(t\)-complement of \(S^\perp\). As shown above, \(C_t = (AB)_t\) for some \(A \in \text{sp}(S)\) and \(B \in S^\perp\). Since \((C + B)_t = D\) and \(C \subseteq B_t\), we get \(B_t = D\). So \(C_t = A_t \in \text{sp}(S)\), hence \(C \in \text{sp}(S)\).

In Proposition 5, we generalize [3, Lemma 4.2]. We need the next lemma which relies on [14, Lemma 3.4] and [8, Proposition 1.2].

Lemma 4. Let \(S\) be a multiplicative set of ideals of \(D\) and \(I\) a nonzero ideal of \(D\). Then

(a) \((ID)_t = (I_tD)_t\).

(b) If \(I\) is a \(t\)-invertible ideal of \(D\) and \((ID)_t = D_S\), then \(I \in \text{sp}(S)\).

Proof. (a) is a part of [14, Lemma 3.4]. For (b), assume that \(I\) is \(t\)-invertible. By [8, Proposition 1.2], \((JD)_t = (J_t)_S\) for each finitely generated nonzero ideal \(J\) of \(D\) with \(D : J\) \(v\)-finite. As \(I\) is \(t\)-invertible, \(I_t = J_t\) for some \(J\) \(v\)-finite and \(I \subseteq J\). Moreover, \(D : I = D : J\) \(v\)-finite and, by (a), \((ID)_t = (J_t)_S\). So, \(D_S = (ID)_t = (JD)_t = (J_t)_S = (I_t)_S\). Hence \(1 \in (I_t)_S\), that is, \(H \subseteq I_t\) for some \(H \in S\). Consequently, \(I \in \text{sp}(S)\). \(\Box\)

Proposition 5. Let \(S\) be a multiplicative set of ideals of \(D\). Then \(S\) is \(t\)-splitting if and only if \(S\) is \(v\)-finite and \(dD_S \cap D\) is a \(t\)-invertible ideal for each \(0 \neq d \in D\).

Proof. Assume that \(S\) is \(t\)-splitting. Then \(S\) is \(v\)-finite, as shown in the paragraph after Proposition 2. Let \(0 \neq d \in D\). Then \(dD = (AB)_t\) for some \(A \in S\) and \(B \in S^\perp\).

As \(B\) is \(t\)-invertible, it suffices to show that \(dD_S \cap D = B_t\). In particular, it will follow that \(dD_S \cap D \subseteq S^\perp\). As \(A(d^{-1}B_1) \subseteq d^{-1}(AB)_t = D, we get \(d^{-1}B_t \subseteq D_S\), hence \(B_t \subseteq dD_S \cap D\). On the other hand, let \(x \in dD_S \cap D\). Then \(C(d^{-1}x) \subseteq D\) for some \(C \in S\). So \(Cx \subseteq dD \subseteq B_t\), hence \(x \in B_t\), because \((C + B)_t = D\).

Conversely, assume that \(S\) is \(v\)-finite and \(dD_S \cap D\) is a \(t\)-invertible ideal for each \(0 \neq d \in D\). Let \(0 \neq d \in D\). As \(B = dD_S \cap D\) is a \(t\)-invertible ideal containing \(dD, dD = (AB)_t\) for some \(t\)-invertible ideal \(A\) of \(D\). Note that \(BD_S \subseteq dD_S\). By part (a) of Lemma 4, we get \(dD_S = (AB)_tD_S = (ABD_S)_t \subseteq (dAD_S)_t\), hence \((AD_S)_t = D_S\). By part (b) of Lemma 4, \(A \in \text{sp}(S)\). To verify that \(B \in S^\perp = \text{sp}(S)^\perp\), it suffices to show that \((B + H)_t = D\) for each \(t\)-ideal \(H \in \text{sp}(S)\). By the second part of our assumption, we may assume that \(H\) is \(v\)-finite. If \(x \in H^{-1}B^{-1}\), then \(x \in D_S\), so \(Bx \subseteq B_D_S \cap D = dD_S \cap D = B\). As \(B\) is \(t\)-invertible, \(x \in D\). Thus
\((H + B)^{-1} = H^{-1} \cap B^{-1} = D\), that is, \((H + B)_v = D\). So \((H + B)_t = (H + B)_v = D\), because \(H\) and \(B\) are \(v\)-finite ideals. Thus \(B \in S^\perp\).

To see that in the 'if' part of the preceding proposition, the assumption that \(S\) is \(v\)-finite is essential, we may use the following example from [8]. Let \(V\) be a nontrivial valuation domain whose maximal ideal \(M\) is idempotent and \(S = \{D, M\}\). Then \(V_S = V\), because \(V : M = V\). So \(dV_S \cap V\) is \(t\)-invertible for each \(0 \neq d \in V\). However, \(S\) is not \(v\)-finite.

Remark 6. Let \(S\) be a \(t\)-splitting set of ideals of \(D\), \(I\) a nonzero ideal of \(D_S\) and \(0 \neq d \in I \cap D\). As shown in the proof of Proposition 5, \(dD_S \cap D \in S^\perp\). Hence \(I \cap D \in S^\perp\), because \(I \cap D \supseteq dD_S \cap D\). Similarly, \(I \cap D \in sp(S)\) whenever \(I\) is a nonzero ideal of \(D_S\).

The next proposition is only a restatement, in our setup, of [3, Theorem 4.10]. The proof is virtually the same. We begin with a simple lemma.

Lemma 7. If \(S\) is a multiplicative set of ideals of \(D\), then \(D = D_S \cap D_{S^\perp}\).

Proof. Let \(x \in D_S \cap D_{S^\perp}\). Then \(xA \subseteq D\) and \(xB \subseteq D\) for some \(A \in S\) and \(B \in S^\perp\). So \(xD = x(A + B)_t = (xA + xB)_t \subseteq D\), hence \(x \in D\).

Proposition 8. Let \(S\) be a \(t\)-splitting set of ideals of \(D\) and \(I\) a nonzero ideal of \(D\). Then

\[I_t = (ID_S)_t \cap (ID_{S^\perp})_t = (((ID_S)_t \cap D)((ID_{S^\perp})_t \cap D))_t.\]

Proof. By Lemma 7, \(D = D_S \cap D_{S^\perp}\). Hence by [1, Theorem 2], the map sending a nonzero fractional ideal \(A\) of \(D\) into \(A^* = (AD_S)_t \cap (AD_{S^\perp})_t\) is a finite character star-operation on \(D\). Consequently, \(I_t \supseteq I^*\). Part (a) of Lemma 4 supplies the opposite inclusion. For the second equality, set \(U = (ID_S)_t \cap D\) and \(V = (ID_{S^\perp})_t \cap D\). By Remark 6, \(U \in S^\perp\) and \(V \in sp(S)\), so \((U + V)_t = D\). Consequently, \(I_t = U \cap V = (U \cap V)_t = (UV)_t\).

Remark 9. Let \(S\) be a \(t\)-splitting set of ideals of \(D\) and \(I\) a nonzero ideal of \(D\). By Proposition 3, \(I_t = (AB)_t\) with \(A \in sp(S)\) and \(B \in S^\perp\). Combining the previous result, Remark 6 and Proposition 3, we get \(A_t = (ID_S)_t \cap D\) and \(B_t = (ID_{S^\perp})_t \cap D\). Note that \((ID_S)_t \cap D\) and \((ID_{S^\perp})_t \cap D\) are \(t\)-ideals of \(D\), cf. Lemma 4 and [5, Proposition 1.1].

Let \(D\) be a domain. By definition, a \(t\)-prime ideal of \(D\) is a nonzero prime ideal of \(D\) which is also a \(t\)-ideal. It is well-known that a prime ideal which is minimal over a nonzero principal ideal is \(t\)-prime. Also, a maximal \(t\)-ideal, that is, a maximal element of the set of all proper \(t\)-ideals, is a \(t\)-prime ideal (see e.g. [12]).

Proposition 10. Let \(S\) be a \(t\)-splitting set of ideals of \(D\) with \(t\)-complement \(S^\perp\) and let \(P\) be a prime \(t\)-ideal of \(D\). Then \(P\) is either in \(sp(S)\) or in \(S^\perp\). Moreover, if \(P \in S^\perp\) and \(Q \subseteq P\) is a nonzero prime ideal, then \(Q \in S^\perp\). A similar assertion holds for \(sp(S)\).

Proof. If \(0 \neq d \in P\) and \(dD = (AB)_t\) with \(A \in S\) and \(B \in S^\perp\), then \(P \supseteq A\) or \(P \supseteq B\). So \(P \in sp(S)\) or \(P \in S^\perp\), but not both because \(P_t \neq D\). For the second part, we may assume that \(Q\) is a prime \(t\)-ideal, so \(Q \in S^\perp\), by the first part.
Lemma 11. Let S be a t-splitting set of ideals of D. Then
(a) $(AD_S)_t = D_S$ for each $A \in sp(S)$, and
(b) $I = ((I \cap D)D_S)_t = (I \cap D)_S$ for each t-ideal I of D_S.

Proof. S is v-finite cf. Proposition 5, so we may apply [8, Proposition 1.8] and part (iv) of [8, Proposition 1.5] to finish the proof.

Denote by $T(D)$ the ordered monoid of fractional t-ideals of D with the t-product and ordered by reverse inclusion and denote by $T_+(D)$ its positive cone, that is, $T_+(D) = \{A \in T(D) | A \subseteq D\}$. When S is a multiplicative set of ideals of D, $T(D_S) \times_c T(D_{S^\perp})$ stands for the cardinal product of the monoids $T(D_S)$ and $T(D_{S^\perp})$. Our next result is an extension of [3, Theorem 4.12].

Theorem 12. If S is a t-splitting set of ideals of D, the map $\alpha : T(D) \rightarrow T(D_S) \times_c T(D_{S^\perp})$, $\alpha(I) = ((ID_S)_t, (ID_{S^\perp})_t)$ is a monoid order-isomorphism.

Proof. Clearly, α is an order-preserving monoid homomorphism. It suffices to show that $\gamma = \alpha | T_+(D) : T_+(D) \rightarrow T_+(D_S) \times T_+(D_{S^\perp})$ is a monoid order-isomorphism. Consider the map $\beta : T_+(D_S) \times_c T_+(D_{S^\perp}) \rightarrow T_+(D)$, $\beta(I, J) = ((I \cap D)(J \cap D))_t$ (note that $I \cap D \in S^\perp$ and $J \cap D \in sp(S)$, cf. Remark 6). We prove that γ and β are inverse to each other. Indeed, if $A \in T_+(D)$, then $\gamma(\beta(A)) = (\alpha(A))_t = (\alpha(A))_t = A$ cf. Proposition 8. Conversely, let $(I, J) \in T_+(D_S) \times_c T_+(D_{S^\perp})$ and set $A = \beta(I, J) = ((I \cap D)(J \cap D))_t$. Since $I \cap D \in sp(S)$, $((J \cap D)D_S)_t = D_S$, cf. Lemma 11. Again by Lemma 11, $(I \cap D)_S)_t = I$. So $(AD_S)_t = ((I \cap D)_S)_t = I$. Similarly, $(AD_{S^\perp})_t = J$. Thus $\gamma(\beta(I, J)) = (I, J)$.

The next result extends [3, Remark 4.13]. Denote by $TI(D)$ the group of fractional t-invertible t-ideals of D with the t-product and by $Cl_t(D)$ the t-class group of D, that is, the factor group of $TI(D)$ modulo its subgroup of principal fractional ideals. For $I \in TI(D)$, let $[I]$ denote the image of I in $Cl_t(D)$.

Remark 13. Let S be a t-splitting set of ideals of D. By Theorem 12, the map α given there induces an isomorphism $TI(D) \rightarrow TI(D_S) \times TI(D_{S^\perp})$. Moreover, if A is a principal fractional ideal of D, then both components of $\alpha(A)$ are principal. Consequently, α induces a surjective group homomorphism $\tilde{\alpha} : Cl_t(D) \rightarrow Cl_t(D_S) \times Cl_t(D_{S^\perp})$, $\tilde{\alpha}(I) = ((ID_S)_t, (ID_{S^\perp})_t)$. As documented in [3, Remark 4.13], $\tilde{\alpha}$ need not be a monomorphism.

For a domain D, let t-$\text{Spec}(D)$ (resp., t-$\text{Max}(D)$) denote the set of all t-prime ideals (resp., maximal t-ideals) of D.

Remark 14. Let S be a t-splitting set of ideals of D. From the proof of Theorem 12, we get a one-to-one correspondence between $S^\perp \cap T_+(D)$ and $T_+(D_S)$ given by $\alpha : (AD_S)_t \rightarrow (AD_S)_t$, and $I \mapsto I \cap D$. Restricting, we get a one-to-one correspondence between $S^\perp \cap t$-$\text{Spec}(D)$ and t-$\text{Spec}(D_S)$. By [4, Theorem 1.1], if $Q \in t$-$\text{Spec}(D_S)$, then $(D_S)_Q = D_{Q \cap D}$. Also, we get a one-to-one correspondence between $sp(S) \cap t$-$\text{Spec}(D)$ and t-$\text{Spec}(D_{S^\perp})$. Note that by Proposition 10, the sets $sp(S) \cap t$-$\text{Spec}(D)$ and $S^\perp \cap t$-$\text{Spec}(D)$ give a partition of t-$\text{Spec}(D)$. Similar correspondences hold when replacing t-Spec by t-Max.

Therefore, by Remark 14 and [4, Theorem 1.1], t-$\text{Max}(D_{S^\perp}) = \{P_{S^\perp} : P \in sp(S) \cap t$-$\text{Max}(D)\}$ and $(D_{S^\perp})_{P_{S^\perp}} = D_P$ for each $P \in sp(S) \cap t$-$\text{Max}(D)$. Similarly,
t-Max(D_S) = \{P_S; P \in S^\perp \cap t-Max(D)\} and (D_S)_{P_S} = D_P for each P \in S^\perp \cap t-Max(D).

Corollary 15. Let S be a t-splitting set of ideals of D. Then DS = \bigcap\{D_P| P \in t-Max(D)\} \cap S^\perp and D_{S^\perp} = \bigcap\{D_P| P \in t-Max(D) \cap sp(S)\}.

Proof. By the preceding paragraph, D_{S^\perp} = \bigcap\{(D_{S^\perp})_Q| Q \in t-Max(D_{S^\perp})\} = \bigcap\{D_P| P \in t-Max(D) \cap sp(S)\}. The other equality can be proved similarly. \Box

Let us recall from [10] that D is a PVMD if and only if D_P is a valuation domain for each maximal t-ideal of D.

Proposition 16. Let S be a t-splitting set of ideals of D. Then every finite type t-ideal in sp(S) is t-invertible if and only if D_{S^\perp} is a PVMD.

Proof. \((\Rightarrow)\) Let Q \in t-Max(D_{S^\perp}) and P = Q \cap D. Then P \in t-Max(D) \cap sp(S) by Lemmas 4 and 11.

Let J be a nonzero finitely generated ideal of D_P. Then J = ID_P where I is a finitely generated ideal of D. Then I_t = (AB)_t for some A \in sp(S) and B \in S^\perp. Since P \in sp(S), B \not\subseteq P, and so (ID_P)_t = (I_tD_P)_t = ((AB)_tD_P)_t = (AD_P)_t. Also, since I is finitely generated, I_t, and hence A_t is of finite type; so A_t is t-invertible. Note that P is a prime t-ideal of D; so AA^{-1} \not\subseteq P. Hence AD_P and ID_P are invertible, and thus ID_P is principal. So D_P is a valuation domain. Thus as D_P \subseteq (D_{S^\perp})_Q, (D_{S^\perp})_Q is a valuation domain, and thus D_{S^\perp} is a PVMD.

\((\Leftarrow)\) Let I \subseteq sp(S) be a finite type t-ideal of D, and let P \in t-Max(D). If P \not\subseteq sp(S), then I \not\subseteq P, and hence ID_P = D_P. Assume that P \subseteq sp(S). Then P_{S^\perp} is a t-ideal of D_{S^\perp} and D_P = (D_{S^\perp})_{P_{S^\perp}}. Since D_{S^\perp} is a PVMD, D_P is a valuation domain. Also, since I is a finite type t-ideal, ID_P is principal. Hence I is t-locally principal, and thus I is t-invertible, cf. [14, Proposition 2.6]. \Box

Our next result is a variant of [6, Theorem 2.2].

Proposition 17. Let \Gamma be a collection of t-invertible prime t-ideals of D and S the multiplicative set generated by \Gamma. Then the following statements are equivalent.

(a) S is a t-splitting set.
(b) \bigcap_{i=1}^{n}P_1 \cdots P_n = 0 for each sequence \((P_n) \) of elements of \Gamma.
(c) D_{S^\perp} is a Krull domain.

Proof. Clearly, S^\perp is the set of ideals I of D contained in no P \in \Gamma. Note that \Gamma \subseteq t-Max(D) cf. [13, Proposition 1.3].

(a) \Rightarrow (c) Let Q \in t-Max(D) \cap sp(S) and Q' \subseteq Q a minimal prime of a principal ideal. Then Q' is a t-ideal and Q' \subseteq sp(S) cf. Proposition 10. Then Q' \supseteq P_1 \cdots P_n for some P_i \in \Gamma. Hence Q' = P_i = Q because P_i \in t-Max(D). Thus t-Max(D) \cap sp(S) = \Gamma and each P \in \Gamma has height one. By Lemma 4, P_{S^\perp} is t-invertible in D_{S^\perp} for each P \in \Gamma. By the paragraph after Remark 14, t-Max(D_{S^\perp}) = \{P_{S^\perp}| P \in \Gamma\} and each P_{S^\perp} has height one, because (D_{S^\perp})_{P_{S^\perp}} = D_P. By [15, Theorem 3.6], D_{S^\perp} is a Krull domain.

(c) \Rightarrow (b) Let \((P_n) \) be a sequence of elements of \Gamma and P = P_n for some n. Clearly P \not\in S^\perp. As P is t-invertible, we have (PD_{S^\perp})_t = P_{S^\perp} (see the proof of Lemma 4), so P_{S^\perp} is a prime t-ideal of D_{S^\perp}. Since D_{S^\perp} is a Krull domain, we get \bigcap_{i=1}^{n}P_1 \cdots P_n \subseteq \bigcap_{i=1}^{n}(P_i)_{S^\perp} \cdots (P_n)_{S^\perp} = 0.

(b) \Rightarrow (a) Assume that \bigcap_{i=1}^{n}P_1 \cdots P_n = 0 for each sequence \((P_n) \) of ideals of \Gamma. Let 0 \neq d \in D. Since each P \in \Gamma is t-invertible, if I is a nonzero ideal contained in P,
we get \(I_t = (PJ)_t \), with \(J = P^{-1}I \). We use repeatedly this factorization property starting with \(I = dD \). By our assumption on \(\Gamma \), we get \(dD = (P_1 \cdots P_n J)_t \) for some \(P_1, \ldots, P_n \in \Gamma \), \(n \geq 0 \) and some ideal \(J \) contained in no \(P \in \Gamma \), thus \(J \in S^\perp \). \(\square \)

We recall that a Mori domain is a domain satisfying the ascending chain condition on integral divisorial ideals.

Corollary 18. A collection of \(t \)-invertible prime \(t \)-ideals of a Mori domain generates a \(t \)-splitting set.

Corollary 19. A collection of \(t \)-invertible uppers to zero in \(D[X] \) generates a \(t \)-splitting set.

Recall that with the realization of the power of splitting sets came various extensions of Nagata’s theorem for UFD’s (see e.g. [2]). Now the question is what can the \(t \)-splitting sets of ideals do for us? In fact they can deliver a somewhat modified version of Nagata type Theorems.

An integral domain \(D \) is said to be of **finite \(t \)-character** if every nonzero nonunit of \(D \) belongs to only finitely many maximal \(t \)-ideals of \(D \).

Proposition 20. Let \(S \) be a \(t \)-splitting set of ideals of an integral domain \(D \), and suppose that every proper ideal in \(S \) is contained in at most a finite number of maximal \(t \)-ideals of \(D \). Then \(D_S \) is a ring of finite \(t \)-character if and only if \(D \) is a ring of finite \(t \)-character.

Proof. By Proposition 10 and the paragraph preceding Corollary 15, if \(P \) is a maximal \(t \)-ideal of \(D \), then either \(P \in \text{sp}(S) \) or \(P \in S^\perp \) and that \(t \)-Max\((D_S) = \{P_S|P \in S^\perp \cap t\text{-Max}(D)\} \). For \(0 \neq d \in D \), let \(dD = (AB)_t \), where \(A \in \text{sp}(S) \) and \(B \in S^\perp \). Since \(A \in S \), there are only a finite number of maximal \(t \)-ideals in \(\text{sp}(S) \) containing \(A \) (and hence \(d \)). Moreover, since \(t \)-Max\((D_S) = \{P_S|P \in S^\perp \cap t\text{-Max}(D)\} \), the number of maximal \(t \)-ideals in \(S^\perp \) containing \(d \) is finite. Therefore, \(D \) is of \(t \)-finite character. The converse is straightforward from the above observation. \(\square \)

This result can be put to direct use in a number of situations. In the following, we address a few of them.

Corollary 21. Let \(D \) be an integral domain and let \(S \) be a \(t \)-splitting set of ideals of \(D \) generated by height-one prime ideals. Suppose that every proper ideal in \(S \) is contained in at most a finite number of maximal \(t \)-ideals of \(D \). Then \(D_S \) is a ring of finite \(t \)-character if and only if \(D \) is a ring of finite \(t \)-character.

An integral domain \(D \) is called a **weakly Krull domain** if \(D = \cap_{P \in X(D)} D_P \) and this intersection has finite character. According to [11], a ring of \(\text{Krull type} \) is an integral domain which is a locally finite intersection of essential valuation overrings. The ring \(D \) of Krull type is an **independent ring of \(\text{Krull type} \)** if each prime \(t \)-ideal of \(D \) lies in a unique maximal \(t \)-ideal and a **generalized Krull domain** if \(D \) is weakly Krull.

Corollary 22. Let \(\mathcal{F} \) be a family of height-one \(t \)-invertible prime \(t \)-ideals of an integral domain \(D \). Let \(S \) be a multiplicative set of ideals generated by \(\mathcal{F} \) and suppose that every nonzero nonunit of \(D \) belongs to at most a finite number members of \(\mathcal{F} \).

1. \(D \) is a weakly Krull domain if and only if \(D_S \) is.
2. \(D \) is a generalized Krull domain if and only if \(D_S \) is.
3. \(D \) is a ring of Krull type if and only if \(D_S \) is.
\(D \) is an independent ring of Krull type if and only if \(D_S \) is.

\(D \) is a PVMD if and only if \(D_S \) is.

Proof. The proof consists in noting that every \(t \)-invertible prime \(t \)-ideal \(P \) is a maximal \(t \)-ideal \([13, \text{Proposition 1.3}]\) and that \(P \) being of height-one implies that \(D_P \) is a discrete valuation domain. The rest depends upon recalling the definitions of the respective notions.

In this vein it would be interesting to record the following result.

Corollary 23. Let \(X \) be an indeterminate over the integral domain \(D \) and \(S = \{ f \in D[X]| A_f^{-1} = D \} \). Then \(D \) is a ring of Krull type if and only if \((D[X])_S \) is a Bezout domain of finite character.

Proof. Recall that \(D \) is a PVMD if and only if \(D[X]_S \) is a Bezout domain \([14, \text{Theorem 3.7}]\) and that \(D \) is of finite character if and only if \(D[X] \) is \([9, \text{Exercise 1, pp.537}]\). So the result follows from Corollary 22(4) because the set \(S := \{ I \subseteq D[X]| I \text{ is an ideal of } D[X] \text{ such that } f \in I \text{ for some } f \in S \} \) is a \(t \)-splitting set of ideals.

Just to give an idea of how these results can be extended we state the following. Let \(\ast \) be a star operation on an integral domain \(D \), and let \(\ast_s \) be the finite type star operation induced by \(\ast \), i.e., \(\ast_s = \cup \{ F^s| F \subseteq I \text{ is finitely generated} \} \) for any \(I \in F(D) \). Then \(D \) is called a Pr"ufer \(\ast \)-multiplication domain if every finitely generated ideal of \(D \) is \(\ast_s \)-invertible. It is clear that Pr"ufer \(\ast \)-multiplication domains are PVMDs because \(\ast_s \subseteq I \).

Proposition 24. Let \(D \) be a domain, \(\ast \) a star operation of finite type on \(D \), \(F \) a family of maximal height-one principal primes of \(D \) and \(S \) the multiplicative set generated by \(F \). Suppose that each nonzero nonunit of \(D \) is contained in at most a finite number of members of \(F \). Then \(D \) is of \(\ast \)-finite character (resp., a Pr"ufer \(\ast \)-multiplication domain) if and only if \(D_S \) is of \(\ast \)-finite character (resp., a Pr"ufer \(\ast \)-multiplication domain).

We note that if the finite character star operation \(\ast \) is the identity star operation \(d \) that takes \(A \mapsto A \) for all \(A \in F(D) \), then a Pr"ufer \(\ast \)-multiplication domain is a Pr"ufer domain. Thus for \(\ast = d \) Proposition 24 gives us the following corollary.

Corollary 25. Let \(D \) be domain, \(F \) a family of height-one principal primes that are also maximal ideals and \(S \) the multiplicative set generated by \(F \). Suppose that every nonzero nonunit of \(D \) belongs to at most a finite number of members of \(F \). Then \(D \) is a Pr"ufer domain of finite character if and only if \(D_S \) is a Pr"ufer domain of finite character.

Acknowledgements

We thank the referee for several helpful suggestions.

References

(Chang) Department of Mathematics, University of Incheon, Incheon 402-749, Korea
E-mail address: whang@incheon.ac.kr

(Dumitrescu) Facultatea de Matematica, Universitatea Bucuresti, Str. Academiei 14, Bucharest, RO-010014, Romania
E-mail address: tiberiu@al.math.unibuc.ro

(Zafrullah) Department of Mathematics, Idaho State University, Pocatello, ID 83209-8085, USA (Current address: 57 Colgate Street, Pocatello, ID 83201)
E-mail address: mzafrullah@usa.net